FGH 95 is a powder metallurgy (P/M) processed superalloy, which was developed in the 1980s in China. One of the applications of FGH 95 was high pressure turbine blade retainers. The manufacturing processes used to p...FGH 95 is a powder metallurgy (P/M) processed superalloy, which was developed in the 1980s in China. One of the applications of FGH 95 was high pressure turbine blade retainers. The manufacturing processes used to produce FGH 95 blade retainers consisted of atomization by plasma rotating electrode process (PREP), hot isostatic pressing (HIP) at super-solvus temperature and a sub-solvus solution heat treatment. The material had an equiaxed grain structure (ASTM 6.5-7.5). The γ precipitates in as-HIP FGH 95 showed a tri-model distribution. Carbides in the alloy were MC type and precipitated at grain boundaries. The prior particle boundaries (PPB) in the material originated mainly from γ' phase. Statistics of the mechanical properties data from batch production of the FGH 95 blade retainers were investigated. The as-HIP FGH 95 blade retainers showed high strength at room temperature and 650 ℃, excellent creep resistance and outstanding stress rupture strength at 650 ℃.展开更多
Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate...Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate the accuracy of 3D printed retainers in comparison to vacuum formed retainers. Methods: Alginate impressions were taken for ten patients who have a CBCT scan. A 3D printed retainer and vacuum formed retainer were fabricated. Linear measure-ments were measured by two assessors using digital caliper. Every measure-ment on the 3D printed retainer was compared to the corresponding measure-ment on the thermoformed retainer. The linear measurements were Inter-canine width, Inter-premolar width (first and second premolars), Inter-molar width, Canine-midline length (both sides) and Canine-molar length (both sides). Intra-observer, and inter-observer reliability measurements were done. Results: Results showed excellent intra-observer reliability for the thermoformed retainer and the 3D printed retainer. Inter-observer measurements showed strong agreement between the measurements of the two assessors, for both retainers. The comparison of the thermoformed retainer to the 3D printed retainer showed high statistical agreement, except for the canine-molar on the right side, but with no clinical significance, p value of 0.038 and mean difference 0.19. Conclusions: The new method for fabricating a 3D printed retainer is accurate and reliable in comparison to the vacuum formed retainer (conventional method). CBCT proved to be efficient for fabrication of a custom made appliances.展开更多
Excavation-induced deformations of earth-retaining walls(ERWs)can critically affect the safety of surrounding structures,highlighting the need for reliable prediction models to support timely decision-making during co...Excavation-induced deformations of earth-retaining walls(ERWs)can critically affect the safety of surrounding structures,highlighting the need for reliable prediction models to support timely decision-making during construction.This study utilizes traditional statistical ARIMA(Auto-Regressive Integrated Moving Average)and deep learning-based LSTM(Long Short-Term Memory)models to predict earth-retaining walls deformation using inclinometer data from excavation sites and compares the predictive performance of both models.The ARIMA model demonstrates strengths in analyzing linear patterns in time-series data as it progresses over time,whereas LSTM exhibits superior capabilities in capturing complex non-linear patterns and long-term dependencies within the time series data.This research includes preprocessing of measurement data for inclinometer,performance evaluation based on various time series data lengths and input variable conditions,and demonstrates that the LSTM model offers statistically significant improvements in predictive performance over the ARIMA model.In addition,by combining LSTM with attention mechanism,attention-based LSTM(ATLSTM)is proposed to improve the short-and long-term prediction performance and solve the problem of excavation site domain change.This study presents the advantages and disadvantages of major time series analysis models for the stability evaluation of mud walls using geotechnical inclinometer data from excavation sites,and suggests that time series analysis models can be used effectively through comparative experiments.展开更多
Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an e...Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an effective way to enhance the resistance to HIC. The present study focused on the relationship between the retained austenite (RA) and HIC behavior in NiCrMoV/Nb multi-alloying ultra-strength steel. Results demonstrated that the maximum volume fraction of RA of 9.31% was obtained for QL30T specimen. After the deep cryogenic pretreatment, the volume fraction of RA reduced to 8.8%. RA could reduce the effective diffusion coefficient, while deep cryogenic pretreatment increased the susceptibility of the steel to HIC by a maxim of 14.8%. This was mainly due to the transformation of retained austenite into martensite, degrading the mechanical properties under hydrogen-charged condition. In addition, the deep cryogenic pretreatment had a significant effect on the crack initiation and propagation, with the intergranular (IG) fracture becoming the dominant fracture mode where an increase in the number of secondary cracks in the section. The interfaces of RA and matrix, as well as the grain boundaries, were the preferred sites for cracks initiation.展开更多
Retaining walls are utilized to support the earth and prevent the soil from spreading with natural slope angles where there are differences in the elevation of ground surfaces.As the need for retaining structures incr...Retaining walls are utilized to support the earth and prevent the soil from spreading with natural slope angles where there are differences in the elevation of ground surfaces.As the need for retaining structures increases,the use of retaining walls is increasing.The retaining walls,which increase the stability of levels,are economical and meet existing adverse conditions.A considerable amount of retaining walls is made from steel-reinforced concrete.The construction of reinforced concrete retaining walls can be costly due to its components.For this reason,the optimum cost should be targeted in the design of retaining walls.This study presents an artificial neural network(ANN)model developed to predict the optimum dimensions of a retaining wall using soil properties,material properties,and external loading conditions.The dataset utilized to train the ANN model is generated with the Flower Pollination Algorithm.The target variables in the dataset are the length of the heel(y1),length of the toe(y2),thickness of the stem(top)(y3),thickness of the stem(bottom)(y4),foundation base thickness(y5)and cost(y6)and these are estimated by utilizing an ANN model based on the height of the wall(x1),material unit weight(x2),wall friction angle(x3),surcharge load(x4),concrete cost per m3(x5),steel cost per ton(x6)and the soil class(x7).The model is formulated and trained as a multi-output regression model,as all outputs are numeric and continuous.The training and evaluation of the model results in a high prediction performance(R20.99).In addition,the impacts of different input features on the model>predictions are revealed using the SHapley Additive exPlanations(SHAP)algorithm.The study demonstrates that when trained with a large dataset,ANN models perform very well by predicting the optimal cost with high performance.展开更多
Gob-side entry retaining(GER)is widely applied in China.Nevertheless,the stability mechanism of the GER with coal pilla r-backfill body(CPBB)under dynamic overburden load remains unexplored.A voussoir beam structure(V...Gob-side entry retaining(GER)is widely applied in China.Nevertheless,the stability mechanism of the GER with coal pilla r-backfill body(CPBB)under dynamic overburden load remains unexplored.A voussoir beam structure(VBS)model is established to analyze roof structure stability during panel advancement,introducing a VBS stability criterion.Reducing block B length l and immediate roof damage variable D,and increasing coal pillar widthχ_(c).lowers the GER structure instability risk.Reducing l and the GER width w leads to a CPBB system stability upswing.A UDEC model was established to systematically reveal how the l,backfill body width x_(b),and strength affect the stability and coupling performance of the CPPB system by monitoring the crack damage D_(C).Simulation results indicate that at l=14 m,χ_(b)=2.0 m,watercement ratio 1.5:1,the coal pillar and backfill body have similar D_(C)but maintain stability,resulting in CPPB system coupling degree K,better.A novel GER method supported by the CPBB was implemented on-site.Monitoring results indicated that the coal pillar peak stresses were 19.17 MPa(ahead),16.14 MPa(behind),and the backfill body peak stress was 12.27 MPa(maximum).The floor heave was380 mm,with a 103 mm backfill body rib.展开更多
Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related cor...Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness.展开更多
The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as diff...The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as difficulty in commanding the entry steadiness and insufficient fragmentation and bulking of the goaf gangue are prevalent.In this study,a 110-mining method for roadway surrounding rock stability control technology based on a compensation mechanism was proposed.First,the composite hard roof cutting short cantilever beam(SCB)model was built and the compensation mechanism including stress and space dual compensation was studied.Subsequently,the controllable elements influencing the roadway steadiness were confirmed to consequently put forward a control technology based on stress compensation for entry support and space compensation for the fragmentation and bulking of goaf gangue.The control technology was finally verified through onsite engineering experiments in terms of composite hard roof.The adoption of the 110-mining method with compensation control technology indicated good support effect on the roadway.The initial and residual expansion coefficients of the goaf gangue increased by 0.6 and 0.6,respectively,and the maximum and average working resistances of the working face support decreased by 10.9%and 13.8%,respectively.Consequently,the deformations of reserved entry decreased,and entry steadiness was enhanced.The presented technique and effects got probably have practical values for non-pillar mining functions in comparable field.展开更多
To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay...To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil.展开更多
This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcr...This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcritical dynamics.The nonlinear governing equations for the FGM pipe are derived by the extended Hamilton's principle,and subsequently discretized through the application of the Galerkin method.The direct method of multi-scales is then used to solve the derived equations.A thorough analysis of various parameters,including the clip stiffness,the power-law index,the porosity,and the clip location,is conducted to gain a comprehensive understanding of the system's nonlinear dynamics.Through the analysis of the first natural frequency,the study highlights the influence of the flow velocity and the clip stiffness,while the comparisons with metallic pipes emphasize the role of FGM composition.The examination of the forced response curves reveals saddle-node bifurcations and their dependence on parameters such as the detuning parameter and the power-law index,offering valuable insights into the system's nonlinear resonant behavior.Furthermore,the frequency-response curves illustrate the hardening nonlinearities influenced by factors such as the porosity and the clip stiffness,revealing nuanced effects on the system response and resonance characteristics.This comprehensive analysis enhances the understanding of nonlinear behaviors in FGM porous pipes with a retaining clip,providing key insights for practical engineering applications in system design and optimization.展开更多
A general analytical method to calculate the passive rigid retaining wall pressure was deduced considering all displacement modes. First, the general displacement mode function was setup, then the hypotheses were made...A general analytical method to calculate the passive rigid retaining wall pressure was deduced considering all displacement modes. First, the general displacement mode function was setup, then the hypotheses were made that the lateral passive pressure is linear to the corresponding horizontal displacement and the soil behind retaining wall is composed of a set of springs and ideal rigid plasticity body, the general analytical method was proposed to calculate the passive rigid retaining wall pressure based on Coulomb theory. The analytical results show that the resultant forces of the passive earth pressure are equal to those of Coulomb's theory, but the distribution of the passive pressure and the position of the resultant force depend on the passive displacement mode parameter, and the former is a parabolic function of the soil depth. The analytical results are also in good agreement with the experimental ones.展开更多
[ Objective ] The aim of the research was to reveal the mechanism of Yizhikang powder treatment on dairy cattle with retained placenta from the hemorheological perspective. [ Method] Dairy cattle with retained placent...[ Objective ] The aim of the research was to reveal the mechanism of Yizhikang powder treatment on dairy cattle with retained placenta from the hemorheological perspective. [ Method] Dairy cattle with retained placenta were treated with oral administration of Yizhikang powder. And their hemorheological indexes were measured and compared with the corresponding indicators of pre-administration group, healthy group, and control group (sick but untreated).[ Result] There was large decrease amplitude in the indexes (whole blood viscosity, plasma viscosity, whole blood viscosity reduction viscosity, ESR, ESR equation K value, fibrinogen content, platelet aggregation rate, RBC deformability IF value) of treated dairy cattle with retained placenta. By t test, the indexes, except hematocrit, decreased significantly after treatment (P〈0.05) and reached the status of post partum healthy cows. The hemorheological indexes didn't change significantly in the control group before and after treatment. [ Conclusion] Yizhikang powder could significantly improve blood flow state and reduced the occurrence of qi stagnation and blood stasis in perinatal period.展开更多
The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for...The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel展开更多
[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of comple...[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water.展开更多
This paper describes the development of an expert system(ES) on earth retaining structures for the selection and design.The ES retaining is an interactive menudriven system and consists of two main parts—the selectio...This paper describes the development of an expert system(ES) on earth retaining structures for the selection and design.The ES retaining is an interactive menudriven system and consists of two main parts—the selection part,selectwall and the design part.Selectwall is developed using the knowledge base and it makes a choice of the most appropriate retaining structure.The design part is developed by three independent subprograms which perform detailed design including strength,deformation,stability of the retaining structure.The calculation results are illustrated by plotting the diagram.Using this program,the design procedure of the retaining structure can be performed automatically.展开更多
文摘FGH 95 is a powder metallurgy (P/M) processed superalloy, which was developed in the 1980s in China. One of the applications of FGH 95 was high pressure turbine blade retainers. The manufacturing processes used to produce FGH 95 blade retainers consisted of atomization by plasma rotating electrode process (PREP), hot isostatic pressing (HIP) at super-solvus temperature and a sub-solvus solution heat treatment. The material had an equiaxed grain structure (ASTM 6.5-7.5). The γ precipitates in as-HIP FGH 95 showed a tri-model distribution. Carbides in the alloy were MC type and precipitated at grain boundaries. The prior particle boundaries (PPB) in the material originated mainly from γ' phase. Statistics of the mechanical properties data from batch production of the FGH 95 blade retainers were investigated. The as-HIP FGH 95 blade retainers showed high strength at room temperature and 650 ℃, excellent creep resistance and outstanding stress rupture strength at 650 ℃.
文摘Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate the accuracy of 3D printed retainers in comparison to vacuum formed retainers. Methods: Alginate impressions were taken for ten patients who have a CBCT scan. A 3D printed retainer and vacuum formed retainer were fabricated. Linear measure-ments were measured by two assessors using digital caliper. Every measure-ment on the 3D printed retainer was compared to the corresponding measure-ment on the thermoformed retainer. The linear measurements were Inter-canine width, Inter-premolar width (first and second premolars), Inter-molar width, Canine-midline length (both sides) and Canine-molar length (both sides). Intra-observer, and inter-observer reliability measurements were done. Results: Results showed excellent intra-observer reliability for the thermoformed retainer and the 3D printed retainer. Inter-observer measurements showed strong agreement between the measurements of the two assessors, for both retainers. The comparison of the thermoformed retainer to the 3D printed retainer showed high statistical agreement, except for the canine-molar on the right side, but with no clinical significance, p value of 0.038 and mean difference 0.19. Conclusions: The new method for fabricating a 3D printed retainer is accurate and reliable in comparison to the vacuum formed retainer (conventional method). CBCT proved to be efficient for fabrication of a custom made appliances.
基金carried out under the KICT Research Program(Project No.20250285-001,Development of Infrastructure Disaster Prevention Technology Based on Satellites SAR)funded by the Ministry of Science and ICT.
文摘Excavation-induced deformations of earth-retaining walls(ERWs)can critically affect the safety of surrounding structures,highlighting the need for reliable prediction models to support timely decision-making during construction.This study utilizes traditional statistical ARIMA(Auto-Regressive Integrated Moving Average)and deep learning-based LSTM(Long Short-Term Memory)models to predict earth-retaining walls deformation using inclinometer data from excavation sites and compares the predictive performance of both models.The ARIMA model demonstrates strengths in analyzing linear patterns in time-series data as it progresses over time,whereas LSTM exhibits superior capabilities in capturing complex non-linear patterns and long-term dependencies within the time series data.This research includes preprocessing of measurement data for inclinometer,performance evaluation based on various time series data lengths and input variable conditions,and demonstrates that the LSTM model offers statistically significant improvements in predictive performance over the ARIMA model.In addition,by combining LSTM with attention mechanism,attention-based LSTM(ATLSTM)is proposed to improve the short-and long-term prediction performance and solve the problem of excavation site domain change.This study presents the advantages and disadvantages of major time series analysis models for the stability evaluation of mud walls using geotechnical inclinometer data from excavation sites,and suggests that time series analysis models can be used effectively through comparative experiments.
文摘Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an effective way to enhance the resistance to HIC. The present study focused on the relationship between the retained austenite (RA) and HIC behavior in NiCrMoV/Nb multi-alloying ultra-strength steel. Results demonstrated that the maximum volume fraction of RA of 9.31% was obtained for QL30T specimen. After the deep cryogenic pretreatment, the volume fraction of RA reduced to 8.8%. RA could reduce the effective diffusion coefficient, while deep cryogenic pretreatment increased the susceptibility of the steel to HIC by a maxim of 14.8%. This was mainly due to the transformation of retained austenite into martensite, degrading the mechanical properties under hydrogen-charged condition. In addition, the deep cryogenic pretreatment had a significant effect on the crack initiation and propagation, with the intergranular (IG) fracture becoming the dominant fracture mode where an increase in the number of secondary cracks in the section. The interfaces of RA and matrix, as well as the grain boundaries, were the preferred sites for cracks initiation.
文摘Retaining walls are utilized to support the earth and prevent the soil from spreading with natural slope angles where there are differences in the elevation of ground surfaces.As the need for retaining structures increases,the use of retaining walls is increasing.The retaining walls,which increase the stability of levels,are economical and meet existing adverse conditions.A considerable amount of retaining walls is made from steel-reinforced concrete.The construction of reinforced concrete retaining walls can be costly due to its components.For this reason,the optimum cost should be targeted in the design of retaining walls.This study presents an artificial neural network(ANN)model developed to predict the optimum dimensions of a retaining wall using soil properties,material properties,and external loading conditions.The dataset utilized to train the ANN model is generated with the Flower Pollination Algorithm.The target variables in the dataset are the length of the heel(y1),length of the toe(y2),thickness of the stem(top)(y3),thickness of the stem(bottom)(y4),foundation base thickness(y5)and cost(y6)and these are estimated by utilizing an ANN model based on the height of the wall(x1),material unit weight(x2),wall friction angle(x3),surcharge load(x4),concrete cost per m3(x5),steel cost per ton(x6)and the soil class(x7).The model is formulated and trained as a multi-output regression model,as all outputs are numeric and continuous.The training and evaluation of the model results in a high prediction performance(R20.99).In addition,the impacts of different input features on the model>predictions are revealed using the SHapley Additive exPlanations(SHAP)algorithm.The study demonstrates that when trained with a large dataset,ANN models perform very well by predicting the optimal cost with high performance.
基金financial support provided by the National Natural Science Foundation of China(Nos.52574126and 52574144)the Xinjiang Uygur Autonomous Region Key R&D Project Task Special-Department and Department Linkage Project(No.2022B01051)+4 种基金the Major Project of Regional Joint Foundation of China(No.U21A20107)the Xinjiang Uygur Autonomous Region Tianchi Introduction Plan(No.2024XGYTCYC03)the Scientific Research Fund of Hunan Provincial Education Department(No.24A0359)the Urumqi City Hongshan Sci-Tech Innvoation Elite Talents Youth Top Talents Program(No.B241013004)the National Key Research and Development Program Young Scientists Project(No.2024YFC2910600)。
文摘Gob-side entry retaining(GER)is widely applied in China.Nevertheless,the stability mechanism of the GER with coal pilla r-backfill body(CPBB)under dynamic overburden load remains unexplored.A voussoir beam structure(VBS)model is established to analyze roof structure stability during panel advancement,introducing a VBS stability criterion.Reducing block B length l and immediate roof damage variable D,and increasing coal pillar widthχ_(c).lowers the GER structure instability risk.Reducing l and the GER width w leads to a CPBB system stability upswing.A UDEC model was established to systematically reveal how the l,backfill body width x_(b),and strength affect the stability and coupling performance of the CPPB system by monitoring the crack damage D_(C).Simulation results indicate that at l=14 m,χ_(b)=2.0 m,watercement ratio 1.5:1,the coal pillar and backfill body have similar D_(C)but maintain stability,resulting in CPPB system coupling degree K,better.A novel GER method supported by the CPBB was implemented on-site.Monitoring results indicated that the coal pillar peak stresses were 19.17 MPa(ahead),16.14 MPa(behind),and the backfill body peak stress was 12.27 MPa(maximum).The floor heave was380 mm,with a 103 mm backfill body rib.
文摘Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness.
基金This work described herein was supported by the Program of China Scholarship Council(202206430008)the National Natural Science Foundation of China(NSFC)(52074300 and 52304111)+1 种基金the Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)the Guizhou province science and technology planning project([2020]3007 and[2020]2Y019).
文摘The 110-mining method,a rising and revolutionary non-pillar longwall mining method,can obviously expand coal extraction ratio and minimize roadway incidents.However,in case of composite hard roof,problems such as difficulty in commanding the entry steadiness and insufficient fragmentation and bulking of the goaf gangue are prevalent.In this study,a 110-mining method for roadway surrounding rock stability control technology based on a compensation mechanism was proposed.First,the composite hard roof cutting short cantilever beam(SCB)model was built and the compensation mechanism including stress and space dual compensation was studied.Subsequently,the controllable elements influencing the roadway steadiness were confirmed to consequently put forward a control technology based on stress compensation for entry support and space compensation for the fragmentation and bulking of goaf gangue.The control technology was finally verified through onsite engineering experiments in terms of composite hard roof.The adoption of the 110-mining method with compensation control technology indicated good support effect on the roadway.The initial and residual expansion coefficients of the goaf gangue increased by 0.6 and 0.6,respectively,and the maximum and average working resistances of the working face support decreased by 10.9%and 13.8%,respectively.Consequently,the deformations of reserved entry decreased,and entry steadiness was enhanced.The presented technique and effects got probably have practical values for non-pillar mining functions in comparable field.
基金financially supported by the National Natural Science Foundation of China (Grant No. 42072150)
文摘To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil.
文摘This study examines the nonlinear behaviors of a clamped-clamped porous pipe made of a functionally graded material(FGM)that conveys fluids and is equipped with a retaining clip,focusing on primary resonance and subcritical dynamics.The nonlinear governing equations for the FGM pipe are derived by the extended Hamilton's principle,and subsequently discretized through the application of the Galerkin method.The direct method of multi-scales is then used to solve the derived equations.A thorough analysis of various parameters,including the clip stiffness,the power-law index,the porosity,and the clip location,is conducted to gain a comprehensive understanding of the system's nonlinear dynamics.Through the analysis of the first natural frequency,the study highlights the influence of the flow velocity and the clip stiffness,while the comparisons with metallic pipes emphasize the role of FGM composition.The examination of the forced response curves reveals saddle-node bifurcations and their dependence on parameters such as the detuning parameter and the power-law index,offering valuable insights into the system's nonlinear resonant behavior.Furthermore,the frequency-response curves illustrate the hardening nonlinearities influenced by factors such as the porosity and the clip stiffness,revealing nuanced effects on the system response and resonance characteristics.This comprehensive analysis enhances the understanding of nonlinear behaviors in FGM porous pipes with a retaining clip,providing key insights for practical engineering applications in system design and optimization.
基金Project (201012200094) supported by the Freedom Exploration Program of Central South University of ChinaProject (20090461022) supported by the China Postdoctoral Science FoundationProject (2010ZJ05) supported by the Science and Technology supporting Program of Xinjiang Production and Construction Corps in China
文摘A general analytical method to calculate the passive rigid retaining wall pressure was deduced considering all displacement modes. First, the general displacement mode function was setup, then the hypotheses were made that the lateral passive pressure is linear to the corresponding horizontal displacement and the soil behind retaining wall is composed of a set of springs and ideal rigid plasticity body, the general analytical method was proposed to calculate the passive rigid retaining wall pressure based on Coulomb theory. The analytical results show that the resultant forces of the passive earth pressure are equal to those of Coulomb's theory, but the distribution of the passive pressure and the position of the resultant force depend on the passive displacement mode parameter, and the former is a parabolic function of the soil depth. The analytical results are also in good agreement with the experimental ones.
基金Supported by Science and Technology Key Projects of Xinjiang Pro-duction and Construction Corps (2006GG22)~~
文摘[ Objective ] The aim of the research was to reveal the mechanism of Yizhikang powder treatment on dairy cattle with retained placenta from the hemorheological perspective. [ Method] Dairy cattle with retained placenta were treated with oral administration of Yizhikang powder. And their hemorheological indexes were measured and compared with the corresponding indicators of pre-administration group, healthy group, and control group (sick but untreated).[ Result] There was large decrease amplitude in the indexes (whole blood viscosity, plasma viscosity, whole blood viscosity reduction viscosity, ESR, ESR equation K value, fibrinogen content, platelet aggregation rate, RBC deformability IF value) of treated dairy cattle with retained placenta. By t test, the indexes, except hematocrit, decreased significantly after treatment (P〈0.05) and reached the status of post partum healthy cows. The hemorheological indexes didn't change significantly in the control group before and after treatment. [ Conclusion] Yizhikang powder could significantly improve blood flow state and reduced the occurrence of qi stagnation and blood stasis in perinatal period.
文摘The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel
基金Supported by Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)2099)~~
文摘[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water.
文摘This paper describes the development of an expert system(ES) on earth retaining structures for the selection and design.The ES retaining is an interactive menudriven system and consists of two main parts—the selection part,selectwall and the design part.Selectwall is developed using the knowledge base and it makes a choice of the most appropriate retaining structure.The design part is developed by three independent subprograms which perform detailed design including strength,deformation,stability of the retaining structure.The calculation results are illustrated by plotting the diagram.Using this program,the design procedure of the retaining structure can be performed automatically.