期刊文献+
共找到1,427篇文章
< 1 2 72 >
每页显示 20 50 100
Efficient Time-Series Feature Extraction and Ensemble Learning for Appliance Categorization Using Smart Meter Data
1
作者 Ugur Madran Saeed Mian Qaisar Duygu Soyoglu 《Computer Modeling in Engineering & Sciences》 2025年第11期1969-1992,共24页
Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids.It offers substantial benefits across social,environmental,and economic dimensions.To effectively r... Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids.It offers substantial benefits across social,environmental,and economic dimensions.To effectively realize these advantages,a fine-grained collection and analysis of smart meter data is essential.However,the high dimensionality and volume of such time-series present significant challenges,including increased computational load,data transmission overhead,latency,and complexity in real-time analysis.This study proposes a novel,computationally efficient framework for feature extraction and selection tailored to smart meter time-series data.The approach begins with an extensive offline analysis,where features are derived from multiple domains—time,frequency,and statistical—to capture diverse signal characteristics.Various feature sets are fused and evaluated using robust machine learning classifiers to identify the most informative combinations for automated appliance categorization.The bestperforming fused features set undergoes further refinement using Analysis of Variance(ANOVA)to identify the most discriminative features.The mathematical models,used to compute the selected features,are optimized to extract them with computational efficiency during online processing.Moreover,a notable dimension reduction is secured which facilitates data storage,transmission,and post processing.Onward,a specifically designed LogitBoost(LB)based ensemble of Random Forest base learners is used for an automated classification.The proposed solution demonstrates a high classification accuracy(97.93%)for the case of nine-class problem and dimension reduction(17.33-fold)with minimal front-end computational requirements,making it well-suited for real-world applications in smart grid environments. 展开更多
关键词 Appliances power consumption smart meter pattern recognition feature extraction time series analysis machine learning CLASSIFICATION
在线阅读 下载PDF
An air combat maneuver pattern extraction based on time series segmentation and clustering analysis
2
作者 Zhifei Xi Yingxin Kou +2 位作者 Zhanwu Li Yue Lv You Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期149-162,共14页
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me... Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy. 展开更多
关键词 Maneuver pattern extraction Data mining Fuzzy segmentation Selective ensemble clustering
在线阅读 下载PDF
Analysis of active patents to investigate the frequency and patterns of Chinese herbal extract combinations claiming to treat heart disease 被引量:1
3
作者 Jiangxue Cheng Shiying Xiao Tonghua Liu 《Journal of Traditional Chinese Medical Sciences》 2016年第2期81-90,共10页
Objective:Using Chinese patents in force to investigate the frequency and patterns of Chinese herbal extract combinations claiming to treat heart disease.Methods:Patent documents were retrieved from the official websi... Objective:Using Chinese patents in force to investigate the frequency and patterns of Chinese herbal extract combinations claiming to treat heart disease.Methods:Patent documents were retrieved from the official website of the State Intellectual Property Office of the People’s Republic China.Cluster,frequency,and fuzzy cluster analyses were applied.Results:A high number of patents in force included high-frequency herbs such as Salvia miltiorrhiza,Panax ginseng,and Panax notoginseng,as well as high-frequency herbal families such as Araliaceae,Leguminosae,Labiatae,and Umbelliferae.Herb pairs such as P.ginsengþOphiopogon japonicus,S.miltiorrhizaþDalbergia odorifera,and P.ginsengþSchisandra chinensis are also commonly used,as well as herbal family pairs such as AraliaceaeþLiliaceae,LauraceaeþLeguminosae,and AraliaceaeþSchisandraceae.Traditional treatment principles for preventing and treating heart diseases was most-commonly based on simultaneously treating the liver and heart and treating the lung and spleen secondarily for choosing herbal combinations.Conclusion:Most of the high-frequency Chinese herbs in the patents investigated belong to the high-frequency herbal families,and herb pairs were commonly selected to coincide with the commonly-used herbal family pairs.Low-frequency Chinese herbs were also used,but generally belonged to the high-frequency herbal families,and were therefore similar to the highfrequency herbs in terms of traditional categories of taste and channel entered.The results reflect the use of traditional principles of formula composition,and suggest that these principles may indeed be an effective guide for further research and development of Chinese herbal extract combinations to prevent and treat heart diseases. 展开更多
关键词 Frequency analysis Cluster analysis Chinese herbal extract pattern Herb pair
暂未订购
Enhanced Pattern Representation in Information Extraction
4
作者 廖乐健 曹元大 张映波 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期143-147,共5页
Traditional pattern representation in information extraction lack in the ability of representing domain-specific concepts and are therefore devoid of flexibility. To overcome these restrictions, an enhanced pattern re... Traditional pattern representation in information extraction lack in the ability of representing domain-specific concepts and are therefore devoid of flexibility. To overcome these restrictions, an enhanced pattern representation is designed which includes ontological concepts, neighboring-tree structures and soft constraints. An information-(extraction) inference engine based on hypothesis-generation and conflict-resolution is implemented. The proposed technique is successfully applied to an information extraction system for Chinese-language query front-end of a job-recruitment search engine. 展开更多
关键词 information extraction ONTOLOGY pattern rules
在线阅读 下载PDF
Automatic Text Summarization Using Genetic Algorithm and Repetitive Patterns 被引量:2
5
作者 Ebrahim Heidary Hamïd Parvïn +4 位作者 Samad Nejatian Karamollah Bagherifard Vahideh Rezaie Zulkefli Mansor Kim-Hung Pho 《Computers, Materials & Continua》 SCIE EI 2021年第4期1085-1101,共17页
Taking into account the increasing volume of text documents,automatic summarization is one of the important tools for quick and optimal utilization of such sources.Automatic summarization is a text compression process... Taking into account the increasing volume of text documents,automatic summarization is one of the important tools for quick and optimal utilization of such sources.Automatic summarization is a text compression process for producing a shorter document in order to quickly access the important goals and main features of the input document.In this study,a novel method is introduced for selective text summarization using the genetic algorithm and generation of repetitive patterns.One of the important features of the proposed summarization is to identify and extract the relationship between the main features of the input text and the creation of repetitive patterns in order to produce and optimize the vector of the main document features in the production of the summary document compared to other previous methods.In this study,attempts were made to encompass all the main parameters of the summary text including unambiguous summary with the highest precision,continuity and consistency.To investigate the efficiency of the proposed algorithm,the results of the study were evaluated with respect to the precision and recall criteria.The results of the study evaluation showed the optimization the dimensions of the features and generation of a sequence of summary document sentences having the most consistency with the main goals and features of the input document. 展开更多
关键词 Natural language processing extractive summarization features optimization repetitive patterns genetic algorithm
在线阅读 下载PDF
Feature extraction of partial discharge in low-temperature composite insulation based on VMD-MSE-IF 被引量:2
6
作者 Xi Chen Xiao Shao +4 位作者 Xin Pan Gaochao Luo Maoqiang Bi Tianyan Jiang Kang Wei 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第2期301-312,共12页
Low-temperature composite insulation is commonly applied in high-temperature super-conducting apparatus while partial discharge(PD)is found to be an important indicator to reveal insulation statues.In order to extract... Low-temperature composite insulation is commonly applied in high-temperature super-conducting apparatus while partial discharge(PD)is found to be an important indicator to reveal insulation statues.In order to extract feature parameters of PD signals more effectively,a method combined variational mode decomposition with multi-scale entropy and image feature is proposed.Based on the simulated test platform,original and noisy signals of three typical PD defects were obtained and decomposed.Accordingly,relative moments and grayscale co-occurrence matrix were employed for feature extraction by K-modal component diagram.Afterwards,new PD feature vectors were obtained by dimension reduction.Finally,effectiveness of different feature extraction methods was evaluated by pattern recognition based on support vector machine and K-nearest neighbour.Result shows that the proposed feature extraction method has a higher recognition rate by comparison and is robust in processing noisy signals. 展开更多
关键词 feature extraction pattern recognition
在线阅读 下载PDF
Research on Intelligent Identification of PD Patterns Based on the Fingerprint Features 被引量:1
7
作者 Qiuping Zheng Ting Chen +4 位作者 Haitao Hu Yingli Wang Dawei Zhao Chuntian Chen Dianchun Zheng 《Applied Mathematics》 2022年第11期896-916,共21页
Five-electrode configurations were designed to simulate the distribution inhomogeneity of electric field intensities in the air-insulating medium, and the characteristic data waveforms of partial discharge generated b... Five-electrode configurations were designed to simulate the distribution inhomogeneity of electric field intensities in the air-insulating medium, and the characteristic data waveforms of partial discharge generated by different electrode configurations under the excitation of power frequency AC voltage were carefully collected in this paper. Furthermore, the feature vectors of the corresponding fingerprint, contained in partial discharge data, were extracted by rigorous mathematical algorithms, and the artificial neural network was employed to realize the pattern recognition of partial discharge caused by the inhomogeneity of electric field intensity with different electrode configurations. The results indicate that the J<sub>4</sub> value in the space of 7 feature quantities is 1905.6, and the recognition rate is 100% when the hidden layer neuron of the network is 19. However, the J<sub>5</sub> value of 9 feature quantities is 1589.9, and the purpose of recognition has been achieved when the number of hidden layer neurons of the network is 6. Increasing the number of hidden layer neurons will only waste computing resources. Of course, PD information collection mode, feature quantity selection, optimal feature space composition, network structure and classification algorithm are the key to realizing PD fault intelligence identification. 展开更多
关键词 PD FINGERPRINT Feature extraction pattern Recognition Class Separability
在线阅读 下载PDF
New supervised learning classifiers for structural damage diagnosis using time series features from a new feature extraction technique
8
作者 Masoud Haghani Chegeni Mohammad Kazem Sharbatdar +1 位作者 Reza Mahjoub Mahdi Raftari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期169-191,共23页
The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduce... The motivation for this article is to propose new damage classifiers based on a supervised learning problem for locating and quantifying damage.A new feature extraction approach using time series analysis is introduced to extract damage-sensitive features from auto-regressive models.This approach sets out to improve current feature extraction techniques in the context of time series modeling.The coefficients and residuals of the AR model obtained from the proposed approach are selected as the main features and are applied to the proposed supervised learning classifiers that are categorized as coefficient-based and residual-based classifiers.These classifiers compute the relative errors in the extracted features between the undamaged and damaged states.Eventually,the abilities of the proposed methods to localize and quantify single and multiple damage scenarios are verified by applying experimental data for a laboratory frame and a four-story steel structure.Comparative analyses are performed to validate the superiority of the proposed methods over some existing techniques.Results show that the proposed classifiers,with the aid of extracted features from the proposed feature extraction approach,are able to locate and quantify damage;however,the residual-based classifiers yield better results than the coefficient-based classifiers.Moreover,these methods are superior to some classical techniques. 展开更多
关键词 structural damage diagnosis statistical pattern recognition feature extraction time series analysis supervised learning CLASSIFICATION
在线阅读 下载PDF
How Can the Balance of Green Infrastructure Supply and Demand Build an Ecological Security Pattern
9
作者 Haixia Zhao Binjie Gu +1 位作者 Qianqian Zhang Yijiang Chen 《Ecosystem Health and Sustainability》 CSCD 2024年第2期86-96,共11页
The escalating degradation of urban eco-environments has underscored the significance of ecological security in sustainable urban development.Green infrastructure bridges green spaces in cities and increases ecosystem... The escalating degradation of urban eco-environments has underscored the significance of ecological security in sustainable urban development.Green infrastructure bridges green spaces in cities and increases ecosystem connectivity,thereby optimizing urban ecological security patterns.This study uses Nanjing as a case study and adopts a research paradigm that involves identifying ecological sources,constructing resistance surfaces,and subsequently extracting corridors within the ecological security pattern.This method amalgamates the evaluation of green infrastructure supply and demand,leading to the identification of both ecological corridors and nodes.The findings reveal that while the supply of green infrastructure in Nanjing is low in the city center and high in the suburbs,demand is high in the central area and low in the periphery,indicating a spatial mismatch between supply and demand.Ecological corridors and nodes are categorized into the core,important,and general levels based on their centrality and areas of supply–demand optimization.The connectivity,supply capacity,and supply–demand relationship of green infrastructure in Nanjing have been enhanced to varying degrees through the ecological security pattern optimization.The results of this study can serve as a decision-making reference for optimizing green infrastructure network patterns and enhancing urban ecological security. 展开更多
关键词 urban eco environment extracting corridors identifying ecological sourcesconstructing resistance surfacesand research paradigm ecological security pattern urban developmentgreen infrastructure ecological security green infrastructure
原文传递
宁波泥金彩漆图案寓意解析及其在服装3D设计中的应用 被引量:1
10
作者 姚其红 《印染》 北大核心 2025年第6期95-99,共5页
深入探究了国家级非物质文化遗产宁波泥金彩漆这一中国工艺美术瑰宝中的图案所蕴含的寓意、在器型部位的应用。通过实例展示了如何将宁波泥金彩漆的图案提取、结合现代服装3D技术,并创新应用于服装设计,实现了传统工艺与现代科技的融合... 深入探究了国家级非物质文化遗产宁波泥金彩漆这一中国工艺美术瑰宝中的图案所蕴含的寓意、在器型部位的应用。通过实例展示了如何将宁波泥金彩漆的图案提取、结合现代服装3D技术,并创新应用于服装设计,实现了传统工艺与现代科技的融合,为非物质文化遗产的传承与创新开辟了新路径。这种创新不仅给服装设计师带来许多创意性的灵感,也为传统工艺的现代转化、非物质文化遗产的保护与创新发展提供了新的视角和实践路径,让宁波泥金彩漆在新时代焕发出新的活力。 展开更多
关键词 宁波泥金彩漆 图案寓意 图案提取与设计 服装3D设计
在线阅读 下载PDF
基于语言表达模式和自然语言处理的有机化学文献数据自动识别提取方法
11
作者 陈维明 戴静芳 +5 位作者 李英勇 周俊红 高犇 赵英莉 徐挺军 薛小松 《有机化学》 北大核心 2025年第6期2189-2198,共10页
期刊文献是科学数据的一个重要来源,以往大多采用人工标引方法识别和提取其中的科学数据.随着信息技术和人工智能方法的发展,从期刊文献资料中自动识别和提取科学数据正在逐步成为可能.研究了结合语言表达模式和基于规则的自然语言处理... 期刊文献是科学数据的一个重要来源,以往大多采用人工标引方法识别和提取其中的科学数据.随着信息技术和人工智能方法的发展,从期刊文献资料中自动识别和提取科学数据正在逐步成为可能.研究了结合语言表达模式和基于规则的自然语言处理技术(NLP)从期刊文章中自动识别提取化学数据和信息的方法,完成了2013~2022年10年《有机化学》期刊中3275篇实验研究文章中化学数据的自动识别提取,提取了包括产物特性、合成反应参数、物性数据、谱学数据等30多种化学数据,提取的数据经过处理建成对应的数据库,已经开始对外提供《有机化学》期刊知识服务.对2022年《有机化学》期刊全部422篇文章进行的方法性能测试表明,旋光数据识别提取的正确率为100%,熔点数据识别提取的正确率为99.85%,氟核磁谱识别提取的正确率为99.55%,碳核磁谱识别提取的正确率为99.80%,物质形态数据识别提取的正确率为99.47%,产物名称识别提取的正确率为98.76%(共提取4665个产物名称,其中有问题的产物名称58个).本文中产物名称自动识别提取使用了基于局部场景的无关内容排除法,如果使用化合物系统半系统命名模式,产物名称的自动识别准确率有望进一步提高.基于语言表达模式和自然语言处理技术的自动识别提取方法原则上不受学科限制,适合所有科学数据. 展开更多
关键词 化学数据 识别提取 语言表达模式 自然语言处理
原文传递
基于船舶行为模式的海上交通航线提取方法
12
作者 刘钊 闵正麟 +3 位作者 高海若 陈阳 罗辰汉 张敏 《中国航海》 北大核心 2025年第3期57-64,共8页
为解决复杂水域内船舶航线规划困难的问题,提出一种基于船舶行为模式的海上交通航线提取方法。基于船舶自动识别系统(AIS)数据,使用阈值判断法与滑动窗口方法识别船舶行为模式特征点;运用聚类算法,对每一类聚类结果中的质心点进行搜索... 为解决复杂水域内船舶航线规划困难的问题,提出一种基于船舶行为模式的海上交通航线提取方法。基于船舶自动识别系统(AIS)数据,使用阈值判断法与滑动窗口方法识别船舶行为模式特征点;运用聚类算法,对每一类聚类结果中的质心点进行搜索以表征点集的分布位置;制定连接规则依次连接质心点,生成海上交通航线;选取北部湾水域AIS数据进行试验分析。结果表明:该方法提取的航线与《北部湾广西海域船舶航行指南》中公布的推荐航路具有较好的相符性。 展开更多
关键词 航线提取 船舶行为模式 航路点 聚类算法
在线阅读 下载PDF
基于离散小波注意力机制的结构光多尺度相位提取网络
13
作者 尚建华 王刚 +2 位作者 刘洋 徐海芹 孙嘉曈 《红外与激光工程》 北大核心 2025年第6期324-336,共13页
提出了一种基于离散小波注意力机制的结构光多尺度相位提取网络(Wavelet Attention Based Multi-scale Phase Extraction Network,WA-MSPNet),旨在提升结构光相位提取的准确性与效率。基于小波域的混合注意力机制,通过离散小波变换提取... 提出了一种基于离散小波注意力机制的结构光多尺度相位提取网络(Wavelet Attention Based Multi-scale Phase Extraction Network,WA-MSPNet),旨在提升结构光相位提取的准确性与效率。基于小波域的混合注意力机制,通过离散小波变换提取低频分量,并在小波域融合通道信息与空间信息,进而增强了有效特征的表达能力;其次,提出一种改进的多尺度增强预测策略,通过自下而上的多层级特征融合输出,提高了预测的准确性和鲁棒性;并且,优化的网络结构,在提升性能的同时能够显著减少参数量和计算量,与经典UNet相比,参数量减少约58%,计算量减少约32%。最后,借助152组测试数据集进行了对比实验,实验结果表明,文中的相位提取网络WA-MSPNet在平均绝对误差、均方根误差以及峰值信噪比等指标方面均优于经典UNet、加入注意力门控的Att-UNet以及结合Swin Transformer和UNet的混合架构模型Swin-UNet,证明了该网络在相位预测的优越性能和良好的泛化能力。 展开更多
关键词 相位提取 深度神经网络 小波变换 条纹投影 条纹图分析
原文传递
两相流实验智能化升级及教学研究
14
作者 李辉 吕卓然 +3 位作者 符泰然 霍雨佳 许兆峰 陆规 《实验技术与管理》 北大核心 2025年第3期174-180,共7页
两相流热工参数测量是能源动力学科一项重要的教学内容,可视化实验系统能够帮助学生直观认识两相流基本现象、流型及其演化规律,在流体力学、传热学及多相流教学中具有重要作用。该文根据两相流实验教学需求,结合最新的人工智能及数字... 两相流热工参数测量是能源动力学科一项重要的教学内容,可视化实验系统能够帮助学生直观认识两相流基本现象、流型及其演化规律,在流体力学、传热学及多相流教学中具有重要作用。该文根据两相流实验教学需求,结合最新的人工智能及数字孪生技术,在原先开发的数字化两相流流型演示实验系统基础上做了智能化升级,采用小波分析和灰度直方图分析两种特征向量提取方法,以及特征向量法及卷积神经网络直接图像识别法这两种智能算法用于识别两相流流型,拓展了实验台功能,丰富了教学内容,实现了多学科交叉融合。该文开发的基于人工智能算法的流型识别方法,也为目前两相流含气率测量无法兼顾精度和效率的瓶颈问题提出了新的解决思路。 展开更多
关键词 气液两相流 流型识别 含气率 人工神经网络 特征提取
在线阅读 下载PDF
基于款式图像的汉服上襦规格尺寸提取
15
作者 刘咏梅 杨欣蓓 张向辉 《毛纺科技》 北大核心 2025年第6期42-48,共7页
为研究基于款式图像的规格尺寸提取机制,针对较平面化特征的汉服上襦,将其款式图像转化为矢量款式图,编程提取矢量款式图的规格尺寸,并进行结构设计应用。首先搜集款式图像并分析款式特征,归纳上襦款式体系,获取5款典型款式上襦;然后处... 为研究基于款式图像的规格尺寸提取机制,针对较平面化特征的汉服上襦,将其款式图像转化为矢量款式图,编程提取矢量款式图的规格尺寸,并进行结构设计应用。首先搜集款式图像并分析款式特征,归纳上襦款式体系,获取5款典型款式上襦;然后处理款式图像,设计汉服上襦专用的160/84A通臂姿势人模,利用模块化绘制方法将款式图像转换成矢量款式图;分类设置5款典型款式的规格项目,编写相应的尺寸提取程序,运用程序提取矢量款式图的规格尺寸;最后采用结构设计及三维虚拟服装设计的方法,验证规格数据的样板生成效果。结果表明基于款式图像的规格尺寸提取方案具有可行性。 展开更多
关键词 款式图像 规格尺寸提取 汉服上襦 矢量款式图 样板生成
在线阅读 下载PDF
浸没系统两相流致压力脉动特性数值分析
16
作者 袁志成 陈利民 +1 位作者 叶天明 曾令杰 《力学学报》 北大核心 2025年第10期2297-2307,共11页
浸没系统通过在投影物镜与硅片之间维持稳定的液体环境,成为浸没式光刻机实现更高分辨率光刻的关键组成部分.为了保证浸没流场的均一和稳定,浸没系统必须依赖负压抽排实现浸没流场的动态密封.然而,气-液两相抽排会引起严重的流致振动问... 浸没系统通过在投影物镜与硅片之间维持稳定的液体环境,成为浸没式光刻机实现更高分辨率光刻的关键组成部分.为了保证浸没流场的均一和稳定,浸没系统必须依赖负压抽排实现浸没流场的动态密封.然而,气-液两相抽排会引起严重的流致振动问题,从而影响双工作台的运动精度,导致曝光线条堆叠和交错等缺陷.针对浸没系统两相抽排亚毫米管道,建立气-液“对冲”流动物理模型.借助开源软件OpenFOAM对管内流型和流致压力脉动特性进行数值分析.研究结果表明,气-液“对冲”流动在回收管底端碰撞交汇形成涡流区,进而诱发管内气-液界面失稳和两相压力脉动.该两相压力脉动特性近似为白噪声,为多个正弦波分量与宽频带白噪声叠加.此外,气密封速度、硅片表面润湿特性和曝光扫描速度对气-液界面流型及管内压力波动特性影响较大.尤其当后退接触角约为65°时,两相界面较为稳定,两相压力脉动可以得到有效抑制.本研究从机理上揭示了浸没系统振动产生的根源,为浸没头结构优化和工艺参数调节提供了理论依据与技术支撑,对提升浸没式光刻机的性能和良品率具有重要工程价值. 展开更多
关键词 浸没式光刻 负压抽排 两相流型 流致振动
在线阅读 下载PDF
基于模式识别的光纤通信网络异常信号检测研究
17
作者 宋志远 赵建 《激光杂志》 北大核心 2025年第8期192-197,共6页
为精准检测光纤通信网络中异常信号,为网络故障诊断及信号修复提供依据,保障光纤通信网络的平稳运行,提出基于模式识别的光纤通信网络异常信号检测方法。分析光纤通信网络信号异常模式,构建包含不同异常模式的信号样本数据集;利用经验... 为精准检测光纤通信网络中异常信号,为网络故障诊断及信号修复提供依据,保障光纤通信网络的平稳运行,提出基于模式识别的光纤通信网络异常信号检测方法。分析光纤通信网络信号异常模式,构建包含不同异常模式的信号样本数据集;利用经验模态分解方法去除光纤通信网络信号中的噪声,从去噪信号中提取瞬时频率、裕度、偏斜度以及峭度4个特征向量,用于光纤通信网络信号的特征表示;建立基于最小二乘支持向量机的异常信号检测模型,利用构建的样本数据集对其实施训练,将提取的光纤通信网络信号特征信息输入至训练好的检测模型中,模型输出结果就是光纤通信网络异常信号检测结果,即光纤通信网络信号异常模式。实验表明,该方法可以精准检测出光纤通信网络信号异常模式,在低信噪比条件下检测灵敏度可达91%以上。 展开更多
关键词 模式识别 光纤通信 网络信号 异常检测 特征向量提取 最小二乘支持向量机
原文传递
传统纺织品图案的屈曲矫正与再生设计 被引量:2
18
作者 石文慧 朱海峰 +2 位作者 蒋汶秦 倪嘉陆 徐平华 《服装学报》 北大核心 2025年第1期40-45,共6页
为解决传统纺织品成像屈曲造成的图案变形问题,探究基于内容的图像拉伸方法,同时对矫正后的图案进行再生设计。通过计算图像的能量矩阵得到端到端的最小能量曲线,利用周边信息计算出填补像素;通过路径动态规划的迭代来实现图像在水平和... 为解决传统纺织品成像屈曲造成的图案变形问题,探究基于内容的图像拉伸方法,同时对矫正后的图案进行再生设计。通过计算图像的能量矩阵得到端到端的最小能量曲线,利用周边信息计算出填补像素;通过路径动态规划的迭代来实现图像在水平和垂直方向上的内容填充,从而实现屈曲图像的矫正。利用边缘检测、矢量化操作和颜色聚类等方法,对纹样和色彩进行再生设计。将基于能量矩阵矫正图案屈曲的方法与其他常用的形态矫正算法进行对比。结果表明,基于能量矩阵矫正图案屈曲的方法在保全内容的前提下,能够有效实现屈曲图案的形态矫正。借助图像处理技术,可以提取矫正后图案的纹样和色彩,应用于当代产品创新设计。 展开更多
关键词 传统图案 屈曲 矫正 色彩提取 能量矩阵
在线阅读 下载PDF
基于计算机视觉与机器学习的结晶器漏钢预报模型 被引量:1
19
作者 王砚宇 程永辉 +5 位作者 朱国强 陈柏宇 张立辉 王齐灿 姚曼 王旭东 《钢铁》 北大核心 2025年第6期103-112,共10页
连铸生产过程中可能会发生许多异常情况,其中漏钢事故是连铸生产中最严重的事故之一。漏钢发生前的典型征兆之一是在铜板局部上形成的呈“V”形扩展的黏结区域,需借助稳定可靠的方法对其进行检测和预报。利用计算机视觉技术,将结晶器铜... 连铸生产过程中可能会发生许多异常情况,其中漏钢事故是连铸生产中最严重的事故之一。漏钢发生前的典型征兆之一是在铜板局部上形成的呈“V”形扩展的黏结区域,需借助稳定可靠的方法对其进行检测和预报。利用计算机视觉技术,将结晶器铜板表面采集到的热电偶温度信号及计算得出的温度速率,与颜色空间建立映射关系,并以二维平面热像图的形式来表征异常黏结区域。通过提取图中黏结区域的动态与静态特征,构建出代表黏结区域的十维特征向量。基于某钢厂的漏钢统计报表,建立了黏结区域特征向量样本库。同时,采用支持向量机(support vector machine,SVM)和随机森林(random forest,RF)这2种机器学习模型,对真伪黏结区域特征进行学习和识别。测试结果表明,相较于随机森林模型,支持向量机模型能够更有效地识别出黏结漏钢的异常温度模式,随机森林模型在预测结果中存在2例漏报,而支持向量机模型的漏钢报出率可达到100%,并且将误报率控制在10%以下(9.93%),在几何平均数Gmean分数(0.95)和模型AUC(0.98)(受试者工作特征曲线下方的面积)等指标方面,支持向量机模型也显著优于随机森林模型,这表明该模型能够满足漏钢预报任务的要求。基于上述结果,建立了基于计算机视觉与机器学习的结晶器漏钢预报模型,为连铸生产中基于数据驱动的过程异常检测和预报技术提供了参考。 展开更多
关键词 漏钢预报 “V”形黏结 计算机视觉 特征提取 支持向量机 随机森林 模式识别 连铸
原文传递
隐形拔牙矫治不同垂直骨面型上颌前牙移动特征的三维有限元研究 被引量:2
20
作者 李汪儒 杨璞 《国际口腔医学杂志》 北大核心 2025年第1期69-75,共7页
目的通过三维有限元分析,探讨不同垂直骨面型患者在无托槽隐形拔牙矫治过程中上颌前牙的移动特征。方法采集1例正畸患者的上颌骨锥形束CT数据和上颌牙列口内扫描数据,使用Mimics、Geomagic Studio、HyperMesh等软件,建立3种不同垂直骨面... 目的通过三维有限元分析,探讨不同垂直骨面型患者在无托槽隐形拔牙矫治过程中上颌前牙的移动特征。方法采集1例正畸患者的上颌骨锥形束CT数据和上颌牙列口内扫描数据,使用Mimics、Geomagic Studio、HyperMesh等软件,建立3种不同垂直骨面型(高角组、均角组、低角组)拔除上颌第一前磨牙的三维有限元模型,模拟透明矫治器内收上颌前牙,分析上颌前牙的移动趋势,分析各向位移量、转矩变化及牙周膜等效应力。结果各垂直骨面型组均表现为牙齿向拔牙侧移动,移动方式为倾斜移动,根位移量小于冠位移量;中切牙和侧切牙的垂直向及矢状向位移量、牙周膜等效应力和转矩变化均表现为低角组、均角组、高角组依次增多;尖牙的垂直向及矢状向位移量、牙周膜等效应力和转矩变化则表现为均角组最多,低角组最小。结论在进行无托槽隐形拔牙矫治设计时,应充分考虑不同垂直骨面型的前牙移动特征,制订个性化设计方案。 展开更多
关键词 无托槽隐形矫治 拔牙矫治 生物力学 垂直骨面型 有限元分析
暂未订购
上一页 1 2 72 下一页 到第
使用帮助 返回顶部