期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Alleviating the Cold Start Problem in Recommender Systems Based on Modularity Maximization Community Detection Algorithm 被引量:4
1
作者 S. Vairachilai M. K. Kavithadevi M. Raja 《Circuits and Systems》 2016年第8期1268-1279,共12页
Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and ... Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and book reviews printed in newspapers, etc. The typical Recommender Systems are software tools and techniques that provide support to people by identifying interesting products and services in online store. It also provides a recommendation for certain users who search for the recommendations. The most important open challenge in Collaborative filtering recommender system is the cold start problem. If the adequate or sufficient information is not available for a new item or users, the recommender system runs into the cold start problem. To increase the usefulness of collaborative recommender systems, it could be desirable to eliminate the challenge such as cold start problem. Revealing the community structures is crucial to understand and more important with the increasing popularity of online social networks. The community detection is a key issue in social network analysis in which nodes of the communities are tightly connected each other and loosely connected between other communities. Many algorithms like Givan-Newman algorithm, modularity maximization, leading eigenvector, walk trap, etc., are used to detect the communities in the networks. To test the community division is meaningful we define a quality function called modularity. Modularity is that the links within a community are higher than the expected links in those communities. In this paper, we try to give a solution to the cold-start problem based on community detection algorithm that extracts the community from the social networks and identifies the similar users on that network. Hence, within the proposed work several intrinsic details are taken as a rule of thumb to boost the results higher. Moreover, the simulation experiment was taken to solve the cold start problem. 展开更多
关键词 Collaborative Recommender Systems cold start Problem Community Detection Pearson Correlation Coefficient
在线阅读 下载PDF
A Deep Collaborative Neural Generative Embedding for Rating Prediction in Movie Recommendation Systems
2
作者 Ravi Nahta Nagaraj Naik +1 位作者 Srivinay Swetha Parvatha Reddy Chandrasekhara 《Computer Modeling in Engineering & Sciences》 2025年第7期461-487,共27页
The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films... The exponential growth of over-the-top(OTT)entertainment has fueled a surge in content consumption across diverse formats,especially in regional Indian languages.With the Indian film industry producing over 1500 films annually in more than 20 languages,personalized recommendations are essential to highlight relevant content.To overcome the limitations of traditional recommender systems-such as static latent vectors,poor handling of cold-start scenarios,and the absence of uncertainty modeling-we propose a deep Collaborative Neural Generative Embedding(C-NGE)model.C-NGE dynamically learns user and item representations by integrating rating information and metadata features in a unified neural framework.It uses metadata as sampled noise and applies the reparameterization trick to capture latent patterns better and support predictions for new users or items without retraining.We evaluate CNGE on the Indian Regional Movies(IRM)dataset,along with MovieLens 100 K and 1 M.Results show that our model consistently outperforms several existing methods,and its extensibility allows for incorporating additional signals like user reviews and multimodal data to enhance recommendation quality. 展开更多
关键词 cold start problem recommender systems METADATA deep learning collaborative filtering generative model
在线阅读 下载PDF
A Novel Recommendation Algorithm Integrates Resource Allocation and Resource Transfer in Weighted Bipartite Network 被引量:2
3
作者 Qiang Sun Leilei Shi +4 位作者 Lu Liu Zixuan Han Liang Jiang Yan Wu Yeling Zhao 《Big Data Mining and Analytics》 EI CSCD 2024年第2期357-370,共14页
Grid-based recommendation algorithms view users and items as abstract nodes,and the information utilised by the algorithm is hidden in the selection relationships between users and items.Although these relationships c... Grid-based recommendation algorithms view users and items as abstract nodes,and the information utilised by the algorithm is hidden in the selection relationships between users and items.Although these relationships can be easily handled,much useful information is overlooked,resulting in a less accurate recommendation algorithm.The aim of this paper is to propose improvements on the standard substance diffusion algorithm,taking into account the influence of the user’s rating on the recommended item,adding a moderating factor,and optimising the initial resource allocation vector and resource transfer matrix in the recommendation algorithm.An average ranking score evaluation index is introduced to quantify user satisfaction with the recommendation results.Experiments are conducted on the MovieLens training dataset,and the experimental results show that the proposed algorithm outperforms classical collaborative filtering systems and network structure based recommendation systems in terms of recommendation accuracy and hit rate. 展开更多
关键词 cloud computing link prediction bipartite graph network recommendation algorithm cold start problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部