The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cok...Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.展开更多
Pursuing green,low-carbon ironmaking technology primarily aims to reduce fuel ratios,especially coke ratios.Simultaneously,the reduction in coke ratios causes the coke layer in the blast furnace(BF)to become thinner,d...Pursuing green,low-carbon ironmaking technology primarily aims to reduce fuel ratios,especially coke ratios.Simultaneously,the reduction in coke ratios causes the coke layer in the blast furnace(BF)to become thinner,deteriorating the gas and liquid permeability of the burden column.This exacerbates coke degradation,significantly impacting the smelting process and increasing the demand for high-quality coke.To investigate the existence state of coke in the hearth,a 2500 m3 BF in China was taken as the research object,and three sets of samples at different heights of the hearth were obtained during planned outage.The results indicate that coke undergoes a significant degradation upon reaching the hearth.The proportion of coke particles smaller than 50 mm ranges from 81.22%to 89.50%.The proportion of coke particles larger than 20 mm decreases as the distance from the centerline of the tuyere increases,while the proportion of particles smaller than 10 mm increases with this distance.Additionally,the closer the bottom of the furnace is,the smaller the coke particle size becomes.The composition of slag filling the coke pores is similar to that of the final slag in the blast furnace,and the graphitization of coke is comparable to that of the final slag.The graphitization of coke starts from the surface of coke and leads to the formation of coke fines,and the graphitization degree of−74μm coke fines is the highest.The temperature has an effect on the reaction rate of coke solution loss,and the higher the temperature is,the faster the reaction rate is.展开更多
The gasification behaviors of coke were investigated under conditions simulating a hydrogen-rich blast furnace atmosphere,composed of N_(2),CO,CO_(2),H_(2),and H_(2)O.Systematic experimental studies were conducted to ...The gasification behaviors of coke were investigated under conditions simulating a hydrogen-rich blast furnace atmosphere,composed of N_(2),CO,CO_(2),H_(2),and H_(2)O.Systematic experimental studies were conducted to examine the effects of gasification temperature and H_(2)O content on the microstructural and macroscopic properties of coke.The results indicated that increasing temperature and H_(2)O content enhanced the gasification and dissolution loss of coke,with temperature having a more significant impact.Pore structure analysis of the gasified coke revealed that small pores and micropores predominated at 900 and 1000℃.However,at gasification temperatures above 1100℃,oversized holes formed,some of which extended into the coke's interior.The compressive strength of the coke was also assessed,showing that higher gasification temperatures or increased H_(2)O content reduced this property.This reduction is primarily due to the increased coke porosity and the degradation of the pore wall structure.X-ray diffraction analysis results suggested that higher gasification temperatures and H2O content could improve the degree of order in the carbon microcrystals of the gasified coke.展开更多
Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on t...Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength.展开更多
Forestry waste(FW)is a significant renewable energy source in China.The substitution of coal blends(BC)with forestry waste to produce metallurgical coke was investigated aiming at expanding alternative resources and r...Forestry waste(FW)is a significant renewable energy source in China.The substitution of coal blends(BC)with forestry waste to produce metallurgical coke was investigated aiming at expanding alternative resources and reducing CO_(2)emissions in ironmaking process.The BC with different ratios of FW were carbonized in a fixed bed reactor,and the physicochemical structure of the coke derived from FW/BC co-carbonization was characterized by Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,solid-state^(13)C nuclear magnetic resonance,optical microscopy,and scanning electron microscopy.The results reveal that the suitable incorporation of FW in BC is 10 wt.%,and the index of coke quality exhibits a good correlation with the optical anisotropy index and the aromaticity of the as-obtained cokes.The partial substitution of BC with FW exhibits potential benefits for colloid formation,owing to the higher hydrogen in FW.However,as the substitution ratio of BC with FW increases,it inhibits coke agglomeration due to more tortuous stacked structures formation during volatile releasing process.Moreover,it was identified that the substitution of higher BC ratios with FW results in the partial replacement of aromatic carbons by oxygenlinked carbons and aliphatic carbons.This substitution leads to a reduction in the aromaticity of the as-obtained coke.展开更多
Transition metal cobalt exhibits strong activation capabilities for alkanes,however,the instability of Co sites leads to sintering and coke deposition,resulting in rapid deactivation.Hierarchical zeolites,with their d...Transition metal cobalt exhibits strong activation capabilities for alkanes,however,the instability of Co sites leads to sintering and coke deposition,resulting in rapid deactivation.Hierarchical zeolites,with their diverse pore structures and high surface areas,are used to effectively anchor metals and enhance coke tolerance.Herein,a post-treatment method using an alkaline solution was employed to synthesize meso-microporous zeolite supports,which were subsequently loaded with Co species for propane dehydrogenation catalyst.The results indicate that the application of NaOH,an inorganic base,produces supports with a larger mesopore volume and more abundant hydroxyl nests compared to TPAOH,an organic base.UV-vis,Raman,and XPS analyses reveal that Co in the 0.5Co/SN-1-0.05 catalyst is mainly in the form of tetrahedral Co^(2+),which effectively activates C-H bonds.In contrast,the 0.5Co/S-1 catalyst contains mainly Co_(3)O_(4)species.Co^(2+)supported on hierarchical zeolites shows better propane conversion(58.6%)and propylene selectivity(>96%)compared to pure silica zeolites.Coke characterization indicates that hierarchical zeolites accumulate more coke,but it is mostly in the form of easily removable disordered carbon.The mesopores in the microporous zeolite support help disperse the active Co metal and facilitate coke removal during dehydrogenation,effectively preventing deactivation from sintering and coke coverage.展开更多
In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,...In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2).展开更多
The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were ...The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were used to investigate the effects of temperature(700–1100℃),CO_(2)(3%–10%),and H_(2)O(1%–9%)concentrations on CH_(4) conversion efficiency.Results indicate that CH_(4) conversion exceeds 90%at temperatures above 1000℃,with CO_(2) and H_(2)O concentrations at 9%and 5%,respectively.During the reforming process,introducing CO_(2) provides additional oxygen,facilitating the oxidation of CH_(4),while H_(2)O enhances H_(2) production through the steam reforming pathway.Experimental findings reveal a CH_(4) conversion of 85.83%with a H_(2)/CO ratio of 5.44 at 1050℃.In addition,an optimal H_(2)O concentration of 6%yields the highest CH_(4) conversion of 84.24%,while CO_(2) exhibits minimal effects on promoting the reforming process.Increasing the metallization rate of pellets from 43%to 92%significantly enhances CH_(4) reforming.This is mainly due to the fact that metallized iron is vital in promoting CH_(4) dissociation and improving syngas yield by providing active sites for the redox cycle of CO_(2) and H_(2)O.展开更多
The removal of H_(2)S from coke oven gas (COG) is an important issue for the further utilization of COG. Zeolites could be used for industrial desulfurization owing to their high thermal stability and regenerability. ...The removal of H_(2)S from coke oven gas (COG) is an important issue for the further utilization of COG. Zeolites could be used for industrial desulfurization owing to their high thermal stability and regenerability. However, further analysis on the kinetics of deep desulfurization using zeolites is necessary to provide relevant information for industrial design. In this study, the desulfurization breakthrough curves of faujasite (FAU) zeolite in COG were measured using a fixed bed reactor. The adsorption isotherm was investigated using the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich models. The adsorption saturated capacity of H_(2)S was inversely related to the temperature. The results show that the Langmuir model best fits the adsorption isotherm with a lower value of root-mean-square-error (RMSE) and Chi-Square (χ^(2)), and the calculated activation energy is 14.62 kJ·mol^(−1). The adsorption kinetics were investigated using pseudo-first-order (PFO), pseudo-second-order (PSO), Bangham and Weber-Morris models. The Bangham model fitted the kinetic data well, indicating that pore diffusion is an influential factor in the adsorption process. The Weber-Morris model suggests that the adsorption rate was not solely determined by the pore diffusion, but was also influenced by the active site on the FAU zeolite. The adsorption breakthrough curves under different gas flow rates were fitted using the bed depth service time (BDST) model, and it provides an accurate prediction of the breakthrough time with a small relative error. The results of thermodynamic analysis demonstrated the feasibility and spontaneity (ΔG<0) and exothermic (ΔH<0) nature of the adsorption process of the FAU zeolite for H_(2)S under COG.展开更多
The wetting behavior of slag–coke is a crucial factor influencing the permeability of the lower part of the blast furnace.However,a systematic understanding of the wetting behavior and underlying mechanisms between t...The wetting behavior of slag–coke is a crucial factor influencing the permeability of the lower part of the blast furnace.However,a systematic understanding of the wetting behavior and underlying mechanisms between titanium-containing slag and tuyere coke remains lacking.The sessile drop method was employed to explore the effects of temperature,binary basicity,FeO,and TiO_(2) contents on the wetting behavior of titanium-containing slag and tuyere coke.The results indicate that increasing the temperature enhances the adhesion and wettability of the droplet,reducing the contact angle.Meanwhile,it accelerates the chemical reactions between slag and coke,leading to faster equilibrium.Conversely,increasing slag basicity elevates the contact angle by inhibiting chemical reactions at the slag–coke interface.This inhibition reduces both contact area and depth,thereby hindering slag droplet spreading on the coke surface.The contact angle decreases as the FeO content in the slag increases.Notably,the increase in TiO_(2) content has a dual effect on slag–coke wettability.Initially,it promotes wetting by reducing surface tension and lowering the contact angle.While the TiO_(2) content exceeds 20 wt.%,Ti(C,N)forms a barrier layer at the slag–coke interface,hindering the contact between slag and coke and resulting in an increased contact angle.展开更多
RP-3 is a kind of aviation kerosene commonly used in hypersonic and scramjet engines due to its superior thermal stability,high energy density,and ability to act as a coolant before combustion.However,it is known that...RP-3 is a kind of aviation kerosene commonly used in hypersonic and scramjet engines due to its superior thermal stability,high energy density,and ability to act as a coolant before combustion.However,it is known that coke can be generated during the cooling process as a carbonaceous deposition on metal walls and its effects on the cooling performance are still largely unknown.To explore the influence mechanism of porous coke on heat transfer characteristics of supercritical RP-3 in the regenerative cooling channel,a series of computational simulations were conducted via a three-dimensional CFD model considering solid wall,porous media and fluid simultaneously.The results show that the porous coke leads to the heat transfer deterioration,but when the coke layer thickness exceeds 1 mm,the weakening influence of coke on heat transfer becomes less important.The effect of porous coke on heat transfer under different inlet flow rates and wall heat fluxes was also analyzed and it was found that the heat exchange between channel wall and RP-3 is more detrimentally affected at large inlet mass flow rate.In a smooth channel,the heat transfer coefficient has a sudden rise along the flow direction,but the presence of porous coke mitigates the abrupt change.Furthermore,the variation of heat flux made a subtle difference in the effect of porous coke on the heat transfer of RP-3.展开更多
Octahedral Fe_(3)O_(4)-modified coke Fenton catalyst(Fe_(3)O_(4)/PCWQ)was prepared via in-situ one-pot oxidation method inspired by grapefruit peel,and characterized by SEM,EDS,XRD,XPS,FTIR,BET,VSM,and Raman,respectiv...Octahedral Fe_(3)O_(4)-modified coke Fenton catalyst(Fe_(3)O_(4)/PCWQ)was prepared via in-situ one-pot oxidation method inspired by grapefruit peel,and characterized by SEM,EDS,XRD,XPS,FTIR,BET,VSM,and Raman,respectively.Fe_(3)O_(4)crystals was predominantly in octahedral morphology with an average particle size of 60 nm.Fe_(3)O_(4)/PCWQ exhibited graphene-like structure.The synergistic effect between oxygen functional group and Fe^(2+)/Fe^(3+)cycle in Fe_(3)O_(4)/PCWQ enhances the degradation performance of p-nitrophenol(P-NP).Under the optimal conditions(1.0 g/L catalyst,30 mmol/L H_(2)O_(2),pH 3.0,25℃),Fe_(3)O_(4)/PCWQ exhibits high degradation efficiency of P-NP(91.25%in 30 min and 98.21%in 180 min)and stability(90.72%after 6 cycles)with low iron leaching(<0.528 mg/L),following the quasi-first-order degradation kinetics.Fe_(3)O_(4)/PCWQ has better catalytic performance than pure Fe_(3)O_(4)under the action of H_(2)O_(2),and is an efficient,stable and repeatable green catalyst.展开更多
The Chinese standard method of GB/T 4000e2017 was unable to accurately measure the coke thermal properties in the large blast furnace.Therefore,the coke compressive strength(CCS)test at a high temperature was designed...The Chinese standard method of GB/T 4000e2017 was unable to accurately measure the coke thermal properties in the large blast furnace.Therefore,the coke compressive strength(CCS)test at a high temperature was designed to examine the coke thermal properties.Then,the large-scale coke model(sp^(2)C_(17421)sp^(3)C_(6579))was established.After,the ReaxFF molecular dynamics simulations were implemented to mimic the coke solution loss(CSL)and the CCS at the high temperature.It was found that the adsorption energy and the diffusion energy of micropores were greater than those of mesopores and macropores,indicating that the CSL reaction mainly happened in the coke micropore.It was discovered that the CSL reaction mechanism was the sp^(3)C oxidization mechanism with the transient state of ketene structure.And,it was detected that the CCS process was divided into the plastic deformation,the instantaneous fracture and the elastic deformation and yield,which was caused by the local reconstruction,the overall folding and the center stretching of carbon layer,respectively.By comparing simulated results with experiments,it was proved that obtained mechanisms were valid.The proposed experimental and simulated methods provided a novel method to measure and understand the coke thermal properties.展开更多
To explore the iron coke application in hydrogen-rich blast furnace,which is an effective method to achieve the purpose of low carbon emissions,the initial gasification temperature of iron coke in CO_(2) and H_(2)O at...To explore the iron coke application in hydrogen-rich blast furnace,which is an effective method to achieve the purpose of low carbon emissions,the initial gasification temperature of iron coke in CO_(2) and H_(2)O atmosphere and its cogasification reaction mechanism with coke were systematically studied.Iron coke was prepared under laboratory conditions,with a 0-7wt%iron ore powder addition.The properties of iron cokes were tested by coke reactivity index(CRI)and coke strength after reaction(CSR),and their phases and morphology were evolution discussed by scanning electron microscopy and X-ray diffraction analysis.The results indicated that the initial gasification temperature of iron coke decreased with the increase in the iron ore powder content under the CO_(2) and H_(2)O_((g))atmosphere.In the 40vol%H_(2)O+60vol%CO_(2) atmosphere,CRI of iron coke with the addition of 3wt%iron ore powder reached 58.7%,and its CSR reached 56.5%.Because of the catalytic action of iron,the reaction capacity of iron coke was greater than that of coke.As iron coke was preferentially gasified,the CRI and CSR of coke were reduced and increased,respectively,when iron coke and coke were cogasified.The results showed that the skeleton function of the coke can be protected by iron coke.展开更多
Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demand...Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.展开更多
The microstructural characteristics including optical texture,porosity and pore structure and chemical structure of stamp-charged coke(SCC)and gravity-charged coke(GCC)with similar conventional macro-indicators were i...The microstructural characteristics including optical texture,porosity and pore structure and chemical structure of stamp-charged coke(SCC)and gravity-charged coke(GCC)with similar conventional macro-indicators were investigated,and the properties including micro-strength,reactivity of coke matrix and that after alkali enrichment were comparatively studied by various characterization methods.The anisotropic structure of SCC is composed of high content of fine mosaic texture,while the content of medium mosaic texture,coarse texture and fibrous texture is low.The statistical average shows that the fine mosaic average of SCC(24.89%)is 3.78 times the GCC average(6.58%),and the coarse mosaic average(1.24%)is only about 1/3 of the GCC average(3.43%).The porosity of SCC is lower than that of GCC,but tamping process does not lead to the fact that the number of closed pores of SCC is significantly lower than that of GCC.Although the structure of SCC is compact,its pore number is large and the pore wall is thin.Pores of coke with diameter less than 150 nm seem unaffected by tamping process.The aromatic structure of SCC was less ordered than that of GCC,which was speculated to be related to the addition of more low metamorphic coal in coking.The microscopic strength and structural strength of SCC are lower than those of GCC.The reactivity of coke matrix is affected by the specific surface area,but it is not the determining factor of its macro-reactivity.The improvement in dissolution reactivity of coke after potassium enrichment is independent of coke type.展开更多
Reducing coke use is an effective measure to reduce carbon emission and energy consumption in the blast furnace(BF)ironmaking.Essentially,BF is a high-temperature moving bed reactor,where complex physical transformati...Reducing coke use is an effective measure to reduce carbon emission and energy consumption in the blast furnace(BF)ironmaking.Essentially,BF is a high-temperature moving bed reactor,where complex physical transformations coupled with complicated reactions occur.This makes it challenging to investigate the factors determining BF performance with the conventional method.A multi-physical field coupling mathematical model of BF was thus developed to describe its mass and heat transfer as well as its intrinsic reactions.Then,the proposed model was validated with the production data.Under coupling conditions,influences of dominating reactions on BF performance(temperature distribution,gas distribution,iron formation reaction,and direct reduction degree)were revealed.The results indicated that coke combustion,indirect reduction,and direct reduction of iron ore mainly took place nearby the shaft tuyere,cohesive zone,and dripping zone,respectively.Besides,the rate of coke solution loss reaction was increased with the rising coke porosity in the cohesive zone.Considering the effect of coke porosity on the efficiency and stability of BF,the coke porosity of 0.42 was regarded as a reasonable value.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
The sulphate is an important factor restricting the efficient and stable operation of the activated coke (AC) flue gas purification system. The simulation experiments and in situ infrared tests of AC taken from desorp...The sulphate is an important factor restricting the efficient and stable operation of the activated coke (AC) flue gas purification system. The simulation experiments and in situ infrared tests of AC taken from desorption tower of the AC flue gas purification system were carried out to first calibrate the thermal desorption characteristics of adsorbed NH_(3) and sulphate and explore the reaction behaviour of NH_(3) with SO_(2) and H_(2)SO_(4). On this basis, some advice for optimising the sulphate generation was put forward to improve the purification efficiency of the AC system. The results show that the temperatures of the desorption of adsorbed NH_(3), the decomposition of (NH_(4))_(2)SO_(4) and NH_(4)HSO_(4) are 224, 276 and 319 ℃, respectively, which lays the foundation for the quantitative analysis of sulphate on AC. Regardless of the NH_(3) amount, only a small portion of H_(2)SO_(4) is converted to sulphate, as the H_(2)SO_(4) deposited in AC pores or agglomerated together could not come into contact with NH_(3). The final reaction product of NH_(3) and SO_(2) is mainly (NH_(4))_(2)SO_(4) which is continuously generated because the newly generated H_(2)SO_(4) is continually exposed to NH_(3), if NH_(3) is enough. The reaction of NH_(3) with H_(2)SO_(4) takes precedence over with NH_(4)HSO_(4). In the initial stages in which H_(2)SO_(4) is exposed to NH_(3), the product is essentially all NH_(4)HSO_(4) as intermediate. Then, it is further converted to (NH_(4))_(2)SO_(4) whose amount reaches equilibrium when the accessible H_(2)SO_(4) is exhausted. All the NH_(3) adsorbed on AC entering the desulphurisation tower generates NH_(4)HSO_(4), but the amount is limited. The remaining SO_(2) entering the denitrification tower mainly generates (NH_(4))_(2)SO_(4);thus, limiting the remaining SO_(2) amount is necessary to guarantee denitrification efficiency. When the NH_(3) injection is changed to the desulphurisation tower, the initial NH_(3) injection rate can be increased to complete the conversion of accessible H_(2)SO_(4) as soon as possible in order to obtain higher denitrification efficiency.展开更多
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金supported by National Natural Science Foundation of China(22178002,22178001)Natural Science Foundation of Anhui Province(2308085Y19)Excellent Youth Research Project of Anhui Provincial Department of Education(2022AH030045).
文摘Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.
基金supported by the National Natural Science Foundation of China(Grant No.U1960205)China Baowu Low Carbon Metallurgy Innovation Foundation(Grant Nos.BWLCF202101 and BWLCF202104)China Minmetals Science and Technology Special Plan Foundation(Grant No.2020ZXA01).
文摘Pursuing green,low-carbon ironmaking technology primarily aims to reduce fuel ratios,especially coke ratios.Simultaneously,the reduction in coke ratios causes the coke layer in the blast furnace(BF)to become thinner,deteriorating the gas and liquid permeability of the burden column.This exacerbates coke degradation,significantly impacting the smelting process and increasing the demand for high-quality coke.To investigate the existence state of coke in the hearth,a 2500 m3 BF in China was taken as the research object,and three sets of samples at different heights of the hearth were obtained during planned outage.The results indicate that coke undergoes a significant degradation upon reaching the hearth.The proportion of coke particles smaller than 50 mm ranges from 81.22%to 89.50%.The proportion of coke particles larger than 20 mm decreases as the distance from the centerline of the tuyere increases,while the proportion of particles smaller than 10 mm increases with this distance.Additionally,the closer the bottom of the furnace is,the smaller the coke particle size becomes.The composition of slag filling the coke pores is similar to that of the final slag in the blast furnace,and the graphitization of coke is comparable to that of the final slag.The graphitization of coke starts from the surface of coke and leads to the formation of coke fines,and the graphitization degree of−74μm coke fines is the highest.The temperature has an effect on the reaction rate of coke solution loss,and the higher the temperature is,the faster the reaction rate is.
基金the financial support provided by the National Natural Science Foundation of China(Nos.52174300 and 52404340)Natural Science Foundation of Chongqing,China(No.cstc2020jcyj-msxmX0583)+2 种基金Research Foundation of Chongqing University of Science and Technology(No.ckrc20240612)Chongqing Talent Plan Project(cstc2021ycjh-bgzxm0211)Chongqing Doctoral“Through Train”Project(No.sl202100000343).
文摘The gasification behaviors of coke were investigated under conditions simulating a hydrogen-rich blast furnace atmosphere,composed of N_(2),CO,CO_(2),H_(2),and H_(2)O.Systematic experimental studies were conducted to examine the effects of gasification temperature and H_(2)O content on the microstructural and macroscopic properties of coke.The results indicated that increasing temperature and H_(2)O content enhanced the gasification and dissolution loss of coke,with temperature having a more significant impact.Pore structure analysis of the gasified coke revealed that small pores and micropores predominated at 900 and 1000℃.However,at gasification temperatures above 1100℃,oversized holes formed,some of which extended into the coke's interior.The compressive strength of the coke was also assessed,showing that higher gasification temperatures or increased H_(2)O content reduced this property.This reduction is primarily due to the increased coke porosity and the degradation of the pore wall structure.X-ray diffraction analysis results suggested that higher gasification temperatures and H2O content could improve the degree of order in the carbon microcrystals of the gasified coke.
基金supported by the National Natural Science Foundation of China(No.51974212)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+2 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Postdoctor Project of Hubei Province(No.2024HBBHCXA074)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04).
文摘Coke is the only solid charge component in the lower part of the blast furnace,and its strength is crucial to its production.Si and Al are the two most abundant elements in coke ash.The influences of these oxides on the tensile strength of the coke matrix were studied by splitting tests.According to the Weibull analysis,with increasing Si and Al oxide concentrations,the fracture stress range of the coke widened,the upper and lower limits decreased,the probability of fracture under the same stress conditions increased,and the randomness and dispersion of strength increased.These results can be attributed to the inhibitory effect of ash during coal pyrolysis.Ash impedes the growth and contact of mesophase,leading to a decrease in graphitic carbon structures and an increase in edge carbon and aliphatic carbon structures in the resulting coke.Consequently,the overall ordering of the carbon structure is reduced.Moreover,SiO_(2)and Al_(2)O_(3)promoted the development of coke pores,thinned the coke pore wall,and significantly increased the proportion of large pores(>500μm).Moreover,Al_(2)O_(3)had more significant influences on the coke strength,carbon structure and stomatal ratio than SiO_(2).In addition,the position where the ash particles bonded to the carbon matrix easily produced cracks and holes,and the sharp edge of the matrix was likely to produce stress concentration points when subjected to an external force,leading to structural damage.Therefore,controlling the concentration of ash could effectively reduce the number of structural defects inside coke,which is conducive to improving the strength.
基金supported by the National Natural Science Foundation of China(Grant No.51706160)Natural Science Foundation of Wuhan(2024040701010057)+2 种基金Hubei Technological Innovation Special Fund(Grant Nos.2023AFA004,2023BCB106,and 2022BCA085)14th“Five-Year Plan’’Hubei Provincial Advantaged Characteristic Disciplines Project of Wuhan University of Science and Technology(2023C0108)Foundation of Hubei Key Laboratory of Industrial Fume&Dust Pollution Control(HBIK2020-02).
文摘Forestry waste(FW)is a significant renewable energy source in China.The substitution of coal blends(BC)with forestry waste to produce metallurgical coke was investigated aiming at expanding alternative resources and reducing CO_(2)emissions in ironmaking process.The BC with different ratios of FW were carbonized in a fixed bed reactor,and the physicochemical structure of the coke derived from FW/BC co-carbonization was characterized by Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,solid-state^(13)C nuclear magnetic resonance,optical microscopy,and scanning electron microscopy.The results reveal that the suitable incorporation of FW in BC is 10 wt.%,and the index of coke quality exhibits a good correlation with the optical anisotropy index and the aromaticity of the as-obtained cokes.The partial substitution of BC with FW exhibits potential benefits for colloid formation,owing to the higher hydrogen in FW.However,as the substitution ratio of BC with FW increases,it inhibits coke agglomeration due to more tortuous stacked structures formation during volatile releasing process.Moreover,it was identified that the substitution of higher BC ratios with FW results in the partial replacement of aromatic carbons by oxygenlinked carbons and aliphatic carbons.This substitution leads to a reduction in the aromaticity of the as-obtained coke.
基金supported by the National Natural Science Foundation of China(Nos.22035009,22178381)the National Key R&D Program of China(Nos.2021YFA1501301,2021YFC2901100)the State Key Laboratory of Heavy Oil Processing(No.2021-03).
文摘Transition metal cobalt exhibits strong activation capabilities for alkanes,however,the instability of Co sites leads to sintering and coke deposition,resulting in rapid deactivation.Hierarchical zeolites,with their diverse pore structures and high surface areas,are used to effectively anchor metals and enhance coke tolerance.Herein,a post-treatment method using an alkaline solution was employed to synthesize meso-microporous zeolite supports,which were subsequently loaded with Co species for propane dehydrogenation catalyst.The results indicate that the application of NaOH,an inorganic base,produces supports with a larger mesopore volume and more abundant hydroxyl nests compared to TPAOH,an organic base.UV-vis,Raman,and XPS analyses reveal that Co in the 0.5Co/SN-1-0.05 catalyst is mainly in the form of tetrahedral Co^(2+),which effectively activates C-H bonds.In contrast,the 0.5Co/S-1 catalyst contains mainly Co_(3)O_(4)species.Co^(2+)supported on hierarchical zeolites shows better propane conversion(58.6%)and propylene selectivity(>96%)compared to pure silica zeolites.Coke characterization indicates that hierarchical zeolites accumulate more coke,but it is mostly in the form of easily removable disordered carbon.The mesopores in the microporous zeolite support help disperse the active Co metal and facilitate coke removal during dehydrogenation,effectively preventing deactivation from sintering and coke coverage.
基金supported by the Scientific Research Project of Hunan Provincial Department of Education (No.22B0458)the National Natural Science Foundation of China (No.52270102).
文摘In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2).
基金financially supported by the National Natural Science Foundation of China(No.52004339)the Key Research and Development Project of Hunan Province,China(No.2022SK2075)+1 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202216)Central South University Graduate Student Independent Exploration and Innovation Project(2024ZZTS0378).
文摘The self-reforming of coke oven gas(COG)in a gas-based shaft furnace was investigated,employing metallized iron as a catalyst.Thermodynamic analyses,supported by FactSage 8.3 calculations and regression modeling,were used to investigate the effects of temperature(700–1100℃),CO_(2)(3%–10%),and H_(2)O(1%–9%)concentrations on CH_(4) conversion efficiency.Results indicate that CH_(4) conversion exceeds 90%at temperatures above 1000℃,with CO_(2) and H_(2)O concentrations at 9%and 5%,respectively.During the reforming process,introducing CO_(2) provides additional oxygen,facilitating the oxidation of CH_(4),while H_(2)O enhances H_(2) production through the steam reforming pathway.Experimental findings reveal a CH_(4) conversion of 85.83%with a H_(2)/CO ratio of 5.44 at 1050℃.In addition,an optimal H_(2)O concentration of 6%yields the highest CH_(4) conversion of 84.24%,while CO_(2) exhibits minimal effects on promoting the reforming process.Increasing the metallization rate of pellets from 43%to 92%significantly enhances CH_(4) reforming.This is mainly due to the fact that metallized iron is vital in promoting CH_(4) dissociation and improving syngas yield by providing active sites for the redox cycle of CO_(2) and H_(2)O.
基金support of Ningbo Fareast Tech Catalyst Engineering Co.,Ltd,the National Natural Science Foundation of China(22478275)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD014).
文摘The removal of H_(2)S from coke oven gas (COG) is an important issue for the further utilization of COG. Zeolites could be used for industrial desulfurization owing to their high thermal stability and regenerability. However, further analysis on the kinetics of deep desulfurization using zeolites is necessary to provide relevant information for industrial design. In this study, the desulfurization breakthrough curves of faujasite (FAU) zeolite in COG were measured using a fixed bed reactor. The adsorption isotherm was investigated using the Langmuir, Freundlich, Temkin, Dubinin-Radushkevich models. The adsorption saturated capacity of H_(2)S was inversely related to the temperature. The results show that the Langmuir model best fits the adsorption isotherm with a lower value of root-mean-square-error (RMSE) and Chi-Square (χ^(2)), and the calculated activation energy is 14.62 kJ·mol^(−1). The adsorption kinetics were investigated using pseudo-first-order (PFO), pseudo-second-order (PSO), Bangham and Weber-Morris models. The Bangham model fitted the kinetic data well, indicating that pore diffusion is an influential factor in the adsorption process. The Weber-Morris model suggests that the adsorption rate was not solely determined by the pore diffusion, but was also influenced by the active site on the FAU zeolite. The adsorption breakthrough curves under different gas flow rates were fitted using the bed depth service time (BDST) model, and it provides an accurate prediction of the breakthrough time with a small relative error. The results of thermodynamic analysis demonstrated the feasibility and spontaneity (ΔG<0) and exothermic (ΔH<0) nature of the adsorption process of the FAU zeolite for H_(2)S under COG.
基金supported by the Postdoctor Project of Hubei Province(2024HBBHCXA074)National Natural Science Foundation of China(51974212)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202116)Foundation of Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking(NPISlab25-03)Science and Technology Major Project of Wuhan(2023020302020572).
文摘The wetting behavior of slag–coke is a crucial factor influencing the permeability of the lower part of the blast furnace.However,a systematic understanding of the wetting behavior and underlying mechanisms between titanium-containing slag and tuyere coke remains lacking.The sessile drop method was employed to explore the effects of temperature,binary basicity,FeO,and TiO_(2) contents on the wetting behavior of titanium-containing slag and tuyere coke.The results indicate that increasing the temperature enhances the adhesion and wettability of the droplet,reducing the contact angle.Meanwhile,it accelerates the chemical reactions between slag and coke,leading to faster equilibrium.Conversely,increasing slag basicity elevates the contact angle by inhibiting chemical reactions at the slag–coke interface.This inhibition reduces both contact area and depth,thereby hindering slag droplet spreading on the coke surface.The contact angle decreases as the FeO content in the slag increases.Notably,the increase in TiO_(2) content has a dual effect on slag–coke wettability.Initially,it promotes wetting by reducing surface tension and lowering the contact angle.While the TiO_(2) content exceeds 20 wt.%,Ti(C,N)forms a barrier layer at the slag–coke interface,hindering the contact between slag and coke and resulting in an increased contact angle.
基金funded by Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-MSX0416)Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)(No.PLN2020-8)+2 种基金Open Fund of Chongqing Key Laboratory of Fire and Explosion Safe(No.LQ21KFJJ02)Open Fund of State Key Laboratory of High Temperature Gas Dynamics(No.2021KF14)Sichuan Science and Technology Program(No.2022YFH0017)。
文摘RP-3 is a kind of aviation kerosene commonly used in hypersonic and scramjet engines due to its superior thermal stability,high energy density,and ability to act as a coolant before combustion.However,it is known that coke can be generated during the cooling process as a carbonaceous deposition on metal walls and its effects on the cooling performance are still largely unknown.To explore the influence mechanism of porous coke on heat transfer characteristics of supercritical RP-3 in the regenerative cooling channel,a series of computational simulations were conducted via a three-dimensional CFD model considering solid wall,porous media and fluid simultaneously.The results show that the porous coke leads to the heat transfer deterioration,but when the coke layer thickness exceeds 1 mm,the weakening influence of coke on heat transfer becomes less important.The effect of porous coke on heat transfer under different inlet flow rates and wall heat fluxes was also analyzed and it was found that the heat exchange between channel wall and RP-3 is more detrimentally affected at large inlet mass flow rate.In a smooth channel,the heat transfer coefficient has a sudden rise along the flow direction,but the presence of porous coke mitigates the abrupt change.Furthermore,the variation of heat flux made a subtle difference in the effect of porous coke on the heat transfer of RP-3.
基金Funded by the Nation Natural Science Foundation of China(No.52304410)the Science Fund for Creative Research Groups of the National Natural Science Foundation of Hubei Province(No.2020CFA038)+2 种基金the Major Project of Hubei Province(Functional coating and materials,No.2023BAA003)the State Key Laboratory of Coking Coal Resources Green Exploitation(No.41040220201308)the Research Project of Yingcheng Xinjincheng Environmental Protection Technology Co.,Ltd(No.2023420612000754)。
文摘Octahedral Fe_(3)O_(4)-modified coke Fenton catalyst(Fe_(3)O_(4)/PCWQ)was prepared via in-situ one-pot oxidation method inspired by grapefruit peel,and characterized by SEM,EDS,XRD,XPS,FTIR,BET,VSM,and Raman,respectively.Fe_(3)O_(4)crystals was predominantly in octahedral morphology with an average particle size of 60 nm.Fe_(3)O_(4)/PCWQ exhibited graphene-like structure.The synergistic effect between oxygen functional group and Fe^(2+)/Fe^(3+)cycle in Fe_(3)O_(4)/PCWQ enhances the degradation performance of p-nitrophenol(P-NP).Under the optimal conditions(1.0 g/L catalyst,30 mmol/L H_(2)O_(2),pH 3.0,25℃),Fe_(3)O_(4)/PCWQ exhibits high degradation efficiency of P-NP(91.25%in 30 min and 98.21%in 180 min)and stability(90.72%after 6 cycles)with low iron leaching(<0.528 mg/L),following the quasi-first-order degradation kinetics.Fe_(3)O_(4)/PCWQ has better catalytic performance than pure Fe_(3)O_(4)under the action of H_(2)O_(2),and is an efficient,stable and repeatable green catalyst.
基金supported by National Natural Science Foundation of China(22478004,22078002 and 21878001)Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2022002)Major Project of Philosophy and Social Science Research in Anhui Universities Supported by Department of Education Anhui Province(2023AH040333).
文摘The Chinese standard method of GB/T 4000e2017 was unable to accurately measure the coke thermal properties in the large blast furnace.Therefore,the coke compressive strength(CCS)test at a high temperature was designed to examine the coke thermal properties.Then,the large-scale coke model(sp^(2)C_(17421)sp^(3)C_(6579))was established.After,the ReaxFF molecular dynamics simulations were implemented to mimic the coke solution loss(CSL)and the CCS at the high temperature.It was found that the adsorption energy and the diffusion energy of micropores were greater than those of mesopores and macropores,indicating that the CSL reaction mainly happened in the coke micropore.It was discovered that the CSL reaction mechanism was the sp^(3)C oxidization mechanism with the transient state of ketene structure.And,it was detected that the CCS process was divided into the plastic deformation,the instantaneous fracture and the elastic deformation and yield,which was caused by the local reconstruction,the overall folding and the center stretching of carbon layer,respectively.By comparing simulated results with experiments,it was proved that obtained mechanisms were valid.The proposed experimental and simulated methods provided a novel method to measure and understand the coke thermal properties.
基金financially supported by the National Natural Science Foundation of China(No.51576164)the Joint Research Fund of China Bao-Wu Iron and Steel Group Company Limited(Nos.U1860108 and U1860203)Science and Technology Commission of Shanghai Municipality,China(Nos.21DZ1208900 and 19DZ2270200)。
文摘To explore the iron coke application in hydrogen-rich blast furnace,which is an effective method to achieve the purpose of low carbon emissions,the initial gasification temperature of iron coke in CO_(2) and H_(2)O atmosphere and its cogasification reaction mechanism with coke were systematically studied.Iron coke was prepared under laboratory conditions,with a 0-7wt%iron ore powder addition.The properties of iron cokes were tested by coke reactivity index(CRI)and coke strength after reaction(CSR),and their phases and morphology were evolution discussed by scanning electron microscopy and X-ray diffraction analysis.The results indicated that the initial gasification temperature of iron coke decreased with the increase in the iron ore powder content under the CO_(2) and H_(2)O_((g))atmosphere.In the 40vol%H_(2)O+60vol%CO_(2) atmosphere,CRI of iron coke with the addition of 3wt%iron ore powder reached 58.7%,and its CSR reached 56.5%.Because of the catalytic action of iron,the reaction capacity of iron coke was greater than that of coke.As iron coke was preferentially gasified,the CRI and CSR of coke were reduced and increased,respectively,when iron coke and coke were cogasified.The results showed that the skeleton function of the coke can be protected by iron coke.
基金financially supported by the Young Elite Scientist Sponsorship Program by CAST(No.YESS20210090)the National Natural Science Foundation of China(No.51974019),Beijing Natural Science Foundation(J210017)China Baowu Low Carbon Metallurgy Innovation Foundation(Nos.BWLCF202119 and BWLCF 202117)。
文摘Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.
基金the National Natural Science Foundation of China(No.52374347)the China Postdoctoral Science Foundation(2021M702553)+2 种基金Natural Science Basic Research Program of Shaanxi(2022JQ-428)Shaanxi Provincial Department of Education Service Local Special Project(22JC042)Key Research and Development Program of Shaanxi(No.2021GY-128).
文摘The microstructural characteristics including optical texture,porosity and pore structure and chemical structure of stamp-charged coke(SCC)and gravity-charged coke(GCC)with similar conventional macro-indicators were investigated,and the properties including micro-strength,reactivity of coke matrix and that after alkali enrichment were comparatively studied by various characterization methods.The anisotropic structure of SCC is composed of high content of fine mosaic texture,while the content of medium mosaic texture,coarse texture and fibrous texture is low.The statistical average shows that the fine mosaic average of SCC(24.89%)is 3.78 times the GCC average(6.58%),and the coarse mosaic average(1.24%)is only about 1/3 of the GCC average(3.43%).The porosity of SCC is lower than that of GCC,but tamping process does not lead to the fact that the number of closed pores of SCC is significantly lower than that of GCC.Although the structure of SCC is compact,its pore number is large and the pore wall is thin.Pores of coke with diameter less than 150 nm seem unaffected by tamping process.The aromatic structure of SCC was less ordered than that of GCC,which was speculated to be related to the addition of more low metamorphic coal in coking.The microscopic strength and structural strength of SCC are lower than those of GCC.The reactivity of coke matrix is affected by the specific surface area,but it is not the determining factor of its macro-reactivity.The improvement in dissolution reactivity of coke after potassium enrichment is independent of coke type.
基金supported by the National Natural Science Foundation of China(Grant Nos.22278001 and 21776002)the Natural Science Foundation of Anhui Provincial Education Department(No.KJ2021A0407)+1 种基金the Natural Science Foundation of Anhui Province(Grant No.2008085QB87)Anhui Provincial Postdoctoral Science Foundation(No.2021B538).
文摘Reducing coke use is an effective measure to reduce carbon emission and energy consumption in the blast furnace(BF)ironmaking.Essentially,BF is a high-temperature moving bed reactor,where complex physical transformations coupled with complicated reactions occur.This makes it challenging to investigate the factors determining BF performance with the conventional method.A multi-physical field coupling mathematical model of BF was thus developed to describe its mass and heat transfer as well as its intrinsic reactions.Then,the proposed model was validated with the production data.Under coupling conditions,influences of dominating reactions on BF performance(temperature distribution,gas distribution,iron formation reaction,and direct reduction degree)were revealed.The results indicated that coke combustion,indirect reduction,and direct reduction of iron ore mainly took place nearby the shaft tuyere,cohesive zone,and dripping zone,respectively.Besides,the rate of coke solution loss reaction was increased with the rising coke porosity in the cohesive zone.Considering the effect of coke porosity on the efficiency and stability of BF,the coke porosity of 0.42 was regarded as a reasonable value.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金support of China Petrochemical Corporation Funding(Sinopec Group,No.321094).
文摘The sulphate is an important factor restricting the efficient and stable operation of the activated coke (AC) flue gas purification system. The simulation experiments and in situ infrared tests of AC taken from desorption tower of the AC flue gas purification system were carried out to first calibrate the thermal desorption characteristics of adsorbed NH_(3) and sulphate and explore the reaction behaviour of NH_(3) with SO_(2) and H_(2)SO_(4). On this basis, some advice for optimising the sulphate generation was put forward to improve the purification efficiency of the AC system. The results show that the temperatures of the desorption of adsorbed NH_(3), the decomposition of (NH_(4))_(2)SO_(4) and NH_(4)HSO_(4) are 224, 276 and 319 ℃, respectively, which lays the foundation for the quantitative analysis of sulphate on AC. Regardless of the NH_(3) amount, only a small portion of H_(2)SO_(4) is converted to sulphate, as the H_(2)SO_(4) deposited in AC pores or agglomerated together could not come into contact with NH_(3). The final reaction product of NH_(3) and SO_(2) is mainly (NH_(4))_(2)SO_(4) which is continuously generated because the newly generated H_(2)SO_(4) is continually exposed to NH_(3), if NH_(3) is enough. The reaction of NH_(3) with H_(2)SO_(4) takes precedence over with NH_(4)HSO_(4). In the initial stages in which H_(2)SO_(4) is exposed to NH_(3), the product is essentially all NH_(4)HSO_(4) as intermediate. Then, it is further converted to (NH_(4))_(2)SO_(4) whose amount reaches equilibrium when the accessible H_(2)SO_(4) is exhausted. All the NH_(3) adsorbed on AC entering the desulphurisation tower generates NH_(4)HSO_(4), but the amount is limited. The remaining SO_(2) entering the denitrification tower mainly generates (NH_(4))_(2)SO_(4);thus, limiting the remaining SO_(2) amount is necessary to guarantee denitrification efficiency. When the NH_(3) injection is changed to the desulphurisation tower, the initial NH_(3) injection rate can be increased to complete the conversion of accessible H_(2)SO_(4) as soon as possible in order to obtain higher denitrification efficiency.