Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment chal...Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment challenges and environmental variations in conductive seawater.This paper employs Particle Swarm Optimization(PSO)to design coupling coils specifically applied for underwater wireless charging station systems.The establishment of underwater charging stations enables Autonomous Underwater Vehicles(AUVs)to recharge batteries underwater,extending mission duration and reducing reliance on surface-based resupply operations.The proposed charging system is designed to address the unique challenges of the underwater environment,such as alignment disruptions and performance degradation caused by seawater conductivity and environmental fluctuations.Given these distinctive underwater conditions,this study explores coupling coil design comprehensively.COMSOL Multiphysics and MATLAB software were integrated to develop an automated coil evaluation platform,effectively assessing coil coupling under varying misalignment conditions.PSO was employed to optimize coil inner diameters,simulating coupling performance across different misalignment scenarios to achieve high misalignment tolerance.The optimized coils were subsequently implemented in a full-bridge series-series resonant converter and compared with control group coils.Results confirmed the PSO-optimized coils enhanced misalignment resistance,exhibiting a variation of coupling coefficient as low as 4.26%,while the control group coils have a variation of 10.34%.In addition,compared to control group coils,PSO-optimized coils achieved an average efficiency of 71%in air and 67%in seawater,outperforming the control group coils at 66%and 60%,respectively.These findings demonstrate the effectiveness of the proposed PSO-based coil design in improving underwater wireless power transfer reliability and efficiency.展开更多
Currently,numerous biomimetic robots inspired by natural biological systems have been developed.However,creating soft robots with versatile locomotion modes remains a significant challenge.Snakes,as invertebrate repti...Currently,numerous biomimetic robots inspired by natural biological systems have been developed.However,creating soft robots with versatile locomotion modes remains a significant challenge.Snakes,as invertebrate reptiles,exhibit diverse and powerful locomotion abilities,including prey constriction,sidewinding,accordion locomotion,and winding climbing,making them a focus of robotics research.In this study,we present a snake-inspired soft robot with an initial coiling structure,fabricated using MXene-cellulose nanofiber ink printed on pre-expanded polyethylene film through direct ink writing technology.The controllable fabrication of initial coiling structure soft robot(ICSBot)has been achieved through theoretical calculations and finite element analysis to predict and analyze the initial structure of ICSBot,and programmable ICSBot has been designed and fabricated.This robot functions as a coiling gripper capable of grasping objects with complex shapes under near infrared light stimulation.Additionally,it demonstrates multi-modal crawling locomotion in various environments,including confined spaces,unstructured terrains,and both inside and outside tubes.These results offer a novel strategy for designing and fabricating coiling-structured soft robots and highlight their potential applications in smart and multifunctional robotics.展开更多
Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufact...Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.展开更多
This paper proposes an electromagnetic coil topology and its control strategy,which can be incorporated into the electromagnetic docking device to achieve relative pose control in satellite docking.The target satellit...This paper proposes an electromagnetic coil topology and its control strategy,which can be incorporated into the electromagnetic docking device to achieve relative pose control in satellite docking.The target satellite has a main coil;the chaser satellite possesses a main coil of the same size accompanied by six and four evenly arranged secondary coils inside and outside the main coil,respectively.The coil on the target satellite is DC energized,while the currents in the coils of the chaser satellite are regulated.To remove the coupling between the pitch/yaw torque and translational force,the internal and external secondary coils of the chaser satellite interact with the main coil of the target satellite to perform the control of relative pitch/yaw and relative translation,respectively,so relative pose control can be achieved.The torque and force vectors exerted by the secondary coils of the chaser satellite are synthesized onto the pitch and yaw axes of the body frame.According to their spatial composition relationship,the formulas are proposed,which obtain the magnetic moment vectors of the coils from the set torques and forces.The controllers regulating pitch/yaw,translation,and distance utilize a three-loop cascaded structure that consists of an outer position loop,a middle velocity loop and an inner current loop.The control strategy is verified by dynamics simulation.展开更多
The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the ...The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the tube were explored experimentally,and water was employed as the working fluid.The numerical simulation was carried out using software programmer ANSYS Fluent 2019 R3 using the finite-volume approach.In the turbulent regime,six cross-sectionedwire coilswere analyzed,including:circular,rectangular,hexagonal,square,star shape,and triangle.The utilization of a tube with a wire coil has been shown to increase heat transfer rate and pump consumption.The results indicate a high level of concurrence,as the deviations are all below 8%.Compared with plain tube,the wire coils,according to the arrangement(TWD),gave the best PEC.The heat transfer enhancement ability of different cross sections follows the following order:StCS>RCS>HCS>SqCS>CCS>TCS.Also,the sequence of pump consumption for each cross section is as follows:RCS>StCS>SqCS>HCS>CCS>TCS.展开更多
The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts....The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.展开更多
The three-axis active attitude control method with a momentum wheel and magnetic coils for a pico-satellite is considered. The designed satellite is a 2.5 kg class satellite stabilized to nadir pointing. The momentum ...The three-axis active attitude control method with a momentum wheel and magnetic coils for a pico-satellite is considered. The designed satellite is a 2.5 kg class satellite stabilized to nadir pointing. The momentum wheel performs a pitch-axis momentum bias, nominally spinning at a particular rate. Three magnetic coils are mounted perpendicularly along the body axis for precise attitude control through the switch control mechanism. Momentum wheel start up control, damping control and attitude acquisition control are considered. Simulation results show that the proposed combined control laws for the pico-satellite is reliable and has an appropriate accuracy under different separation conditions. The proposed strategy to start up the wheel after separation from the launch vehicle shows that its pitch momentum wheel can start up successfully to its nominal speed from rest, and the attitude convergence can be completed within several orbits, depending on separation conditions.展开更多
For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identifi...For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identification of the weighting of harmonic components in the current distribution that will generate a magnetic field whose z-component follows a chosen spherical harmonic function. Mathematical expressions which relate the harmonic terms in the cylin- drical current distribution to spherical harmonic terms in the field expansion are established. Thus a simple matrix inversion approach can be used to design a shim coil of any order pure harmonic. The expressions providing a spherical harmonic decomposition of the field components produced by a particular cylindrical current distribution are novel. A stream function was applied to obtain the discrete wire distribution on the cylindrical-surface. This method does not require the setting of the target-field points. The discussion referring to matrix equations in terms of condition numbers proves that this novel approach has no ill-conditioned problems. The results also indicate that it can be used to design cylindrical-surface shim coils of finite length that will generate a field variation which follows a particular spherical harmonic over a reasonably large-sized volume.展开更多
A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil.It is fre-quently observed in an eddy current(EC)array probe.In this work,a tilted non-coaxial driver-pickup ...A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil.It is fre-quently observed in an eddy current(EC)array probe.In this work,a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evalua-tion.Basically,the core of the formulation is to obtain the projection of magnetic vector potential(MVP)from the driver coil onto the vector along the tilted pickup coil,which is divided into two key steps.The first step is to make a projection of MVP along the pickup coil onto a horizontal plane,and the second one is to build the relationship between the pr,ojected MVP and the MVP along the driver coil.Afterwards,an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields.The calculated values from the resulting model indicate good agreement with those from the finite element model(FEM)and experiments,which validates the developed analytical model.展开更多
Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polyg...Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polygons.Based on the Biot-Savart law,the method calculates mutual inductance by dividing a polygonal coil into finite wires,and expresses the magnetic induction intensity generated by the excitation coil as a function of the spatial position of each vertex of the coil.The calculation method of the feasible region of the objective function is updated and the calculation process is simplified,so the calculation accuracy is improved.For octagon coils arbitrarily positioned in space,the accuracy of the algorithm is verified by the simulation and experiment.展开更多
ITER edge localized mode (ELM) coils are important components of the in-vessel coils (IVCs) and they are designed for mitigating or suppressing ELMs. The coils located on the vacuum vessel (VV) and behind the bl...ITER edge localized mode (ELM) coils are important components of the in-vessel coils (IVCs) and they are designed for mitigating or suppressing ELMs. The coils located on the vacuum vessel (VV) and behind the blanket are subjected to high temperature due to the nuclear heat from the plasma, the Ohmic heat induced by the working current and the thermal radiation from the environment. The water serves as coolant to remove the heat deposited into the coils. Based on the results of nuclear analysis, the thermal-hydraulic analysis is performed for the preliminary design of upper ELM coils using a rapid evaluation method based on 1D treatment. The thermal-hydraulic design and operating parameters including the water flow velocity are optimized. It is found that the rapid evaluation method based on 1D treatment is feasible and reliable. According to the rapid analysis method, the thermal hydraulic parameters of two water flow schemes are computed and proved similar to each other, providing an effective basis for the coil design. Finally, considering jointly the pressure drop requirement and the cooling capacity, the flow velocity is optimized to 5 m/s.展开更多
The electromagnetic properties of high temperature superconductors(HTS)are characterized with the explicit intent to improve their integration in electric power systems.A tape and a coil made of Bismuth Strontium Calc...The electromagnetic properties of high temperature superconductors(HTS)are characterized with the explicit intent to improve their integration in electric power systems.A tape and a coil made of Bismuth Strontium Calcium Copper Oxide(BSCCO)are considered in the presence of electromagnetically active materials in order to mimic properly the electromagnetic environment typical of electrical machines.The characterization consists of the determining the critical current and the AC losses at different values of the frequency and the transport current.The effects induced by the proximity of the active materials are studied and some related experimental issues are analyzedc.展开更多
Magnetic coils for specific requirements are widely used in modern quantum physics. In this study, a general analytical method of designing the shielded coils for generating an arbitrary axial magnetic field is propos...Magnetic coils for specific requirements are widely used in modern quantum physics. In this study, a general analytical method of designing the shielded coils for generating an arbitrary axial magnetic field is proposed. The theoretical formula for an axial magnetic field generated by a single shielded coil is obtained and used to construct specific coils. The structural parameters of these coils are determined by fitting the theoretical formula with their specific requirements. The feasibility of this method is proved by realizing four concrete kinds of coils: uniform magnetic field generating coils, gradient magnetic field generating coils, asymmetrical uniform magnetic field generating coils, and parabolic magnetic field generating coils. The correctness of these theoretical results is demonstrated by both the finite element simulations and the relevant experimental results. Furthermore, the application of this method is of great significance for developing the quantum physics and quantum devices in future.展开更多
In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production...In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production process,of which is designed a cooling experimental instrument in the end. The experiments show that high initial coolingtemperature, discontinuous cooling style, and long cooling time can improve mechanical property of cooling coilsand shorten cooling time. The CC coils experiments cover the different steel grades, so that CC process effects onhot-rolled coils may be predicted and controlled actively.展开更多
The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-...The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wires made in Russian '. A single D-shaped toroidal field magnet coil will be tested for large and expensive magnets systems before assembling them in the toroidal configuration. This paper describes the layout of the instrumentation for a superconducting test facility based on the results of a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7U tokamak device. At the same time, the design of coil support structure in the test facility is particularly discussed in some detail.展开更多
This paper is devoted to predict AC loss of cable in conduit conductor (CICC) which is of importance in the design of conductors. The consideration for the conductor's design and main parameters for the magnets are...This paper is devoted to predict AC loss of cable in conduit conductor (CICC) which is of importance in the design of conductors. The consideration for the conductor's design and main parameters for the magnets are introduced. In order to attain a good accuracy in the calculation of AC losses, the field distribution within superconducting outsert should be considered. Calculation of the AC losses, including hysteresis losses and coupling losses, is conducted. An emphasis is put on the hysteresis loss during the ramp up of the current to the operational current (15.3 kA) and the coupling loss of the conductor in a power-down condition for insert. The results are obtained to be 74.9 kJ and 950 J for 40 T hybrid magnets, respectively. Based on the calculation, a brief analysis of losses effect on the conductor design and the operation of magnet is given for the purpose that the capacity of the cryogenertor can be evaluated and the stability regime can be improved in our future work on the hybrid magnets.展开更多
Electrolytic detachable coils (EDC) have been the main embolic materi als for intracranial aneurysms. Liquid aneurysmal embolic materials represented by cellulose acetate polymer (CAP) are still in controversy. In thi...Electrolytic detachable coils (EDC) have been the main embolic materi als for intracranial aneurysms. Liquid aneurysmal embolic materials represented by cellulose acetate polymer (CAP) are still in controversy. In this research, t he embolization results and pathological reactions after embolization of canine aneurysmal models with EDC or CAP were observed and compared. Methods. The canine aneurysmal models constructed by anastomosis of venous pouch es were randomly grouped. The aneurysms were respectively occluded with CAP and electrolytic detachable coils that was named by Wu electrolytic detachable coil (WEDC) and made by us. Angiogram follow ups were performed at 24 hour, 2 week , and 2 month after embolization. The occluded aneurysms were dissected in each stage for light microscopic, electron microscopic, and histochemical research. Results. The effect of embolization was significantly better with WEDC than that with CAP . Post embolized complications such as aneurysm rupture and stenosis of parent arteries could only be found in CAP group. Pathol ogical research showed that CAP mass could packed the aneurysms more densely tha n coils. Acute chemical damage of aneurysmal wall and inflammatory cell infiltra tion was prominently found in early stage after CAP embolization. Organization of thrombus inside aneurysms and formation of endothelial tissue over the orific es of aneurysmal necks could be found in both groups 2 months after embolization . But parts of coils might be exposed outside endothelial layer. Conclusions. EDC are still the most safe, efficient, and reliable instruments to embolize aneurysm. CAP should be improved further to solve the problem of stron g chemical corrosion and difficulty in control before it is widely used.展开更多
A set of in-vessel resonant magnetic perturbation (RMP) coils for MHD instability suppression is proposed for the design of a HL-2M tokamak. Each coil is to be fed with a current of up to 5 kA, operated in a frequen...A set of in-vessel resonant magnetic perturbation (RMP) coils for MHD instability suppression is proposed for the design of a HL-2M tokamak. Each coil is to be fed with a current of up to 5 kA, operated in a frequency range from DC to about I kHz. Stainless steel (SS) jacketed mineral insulated cables are proposed for the conductor of the coils. In-vessel coils must withstand large electromagnetic (EM) and thermal loads. The support, insulation and vacuum sealing in a very limited space are crucial issues for engineering design. Hence finite element calculations are performed to verify the design, optimize the support by minimizing stress caused by EM forces on the coil conductors and work out the temperature rise occurring on the coil in different working conditions, the corresponding thermal stress caused by the thermal expansion of materials is evaluated to be allowable. The techniques to develop the in-vessel RMP coils, such as support, insulation and cooling, are discussed.展开更多
A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy.Unlike the popular stream f...A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy.Unlike the popular stream function method,the proposed method has design variables that are the distribution of conductive material.A voltage-driven transverse gradient coil is proposed to be used as micro-scale magnetic resonance imaging(MRI)gradient coils,thus avoiding introducing a coil-winding pattern and simplifying the coil configuration.The proposed method avoids post-processing errors that occur when the continuous current density is approximated by discrete wires in the stream function approach.The feasibility and accuracy of the method are verified through designing the z-gradient and y-gradient coils on a cylindrical surface.Numerical design results show that the proposed method can provide a new coil layout in a compact design space.展开更多
High vacuum is required for Vacuum Pressure Impregnation (VPI) process of large coils used in cryogenic. The defects such as dry spots and over rich resins should be minimized in large superconducting coils used. Both...High vacuum is required for Vacuum Pressure Impregnation (VPI) process of large coils used in cryogenic. The defects such as dry spots and over rich resins should be minimized in large superconducting coils used. Both sealing problems associated with the mold and over rich resin problems are eliminated by using vacuum bag mold method with which we can simplify the design of vacuum mold.展开更多
基金supported by the National Science and Technology Council(NSTC),Taiwan[Project code MOST 110-2222-E-019-005-MY3].
文摘Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment challenges and environmental variations in conductive seawater.This paper employs Particle Swarm Optimization(PSO)to design coupling coils specifically applied for underwater wireless charging station systems.The establishment of underwater charging stations enables Autonomous Underwater Vehicles(AUVs)to recharge batteries underwater,extending mission duration and reducing reliance on surface-based resupply operations.The proposed charging system is designed to address the unique challenges of the underwater environment,such as alignment disruptions and performance degradation caused by seawater conductivity and environmental fluctuations.Given these distinctive underwater conditions,this study explores coupling coil design comprehensively.COMSOL Multiphysics and MATLAB software were integrated to develop an automated coil evaluation platform,effectively assessing coil coupling under varying misalignment conditions.PSO was employed to optimize coil inner diameters,simulating coupling performance across different misalignment scenarios to achieve high misalignment tolerance.The optimized coils were subsequently implemented in a full-bridge series-series resonant converter and compared with control group coils.Results confirmed the PSO-optimized coils enhanced misalignment resistance,exhibiting a variation of coupling coefficient as low as 4.26%,while the control group coils have a variation of 10.34%.In addition,compared to control group coils,PSO-optimized coils achieved an average efficiency of 71%in air and 67%in seawater,outperforming the control group coils at 66%and 60%,respectively.These findings demonstrate the effectiveness of the proposed PSO-based coil design in improving underwater wireless power transfer reliability and efficiency.
基金supported by the National Key R&D Program of China(NO.2024YFB3409900)the China Postdoctoral Science Foundation(NO.2023M730845)the Heilongjiang Postdoctoral Fund(NO.LBH-Z23182)。
文摘Currently,numerous biomimetic robots inspired by natural biological systems have been developed.However,creating soft robots with versatile locomotion modes remains a significant challenge.Snakes,as invertebrate reptiles,exhibit diverse and powerful locomotion abilities,including prey constriction,sidewinding,accordion locomotion,and winding climbing,making them a focus of robotics research.In this study,we present a snake-inspired soft robot with an initial coiling structure,fabricated using MXene-cellulose nanofiber ink printed on pre-expanded polyethylene film through direct ink writing technology.The controllable fabrication of initial coiling structure soft robot(ICSBot)has been achieved through theoretical calculations and finite element analysis to predict and analyze the initial structure of ICSBot,and programmable ICSBot has been designed and fabricated.This robot functions as a coiling gripper capable of grasping objects with complex shapes under near infrared light stimulation.Additionally,it demonstrates multi-modal crawling locomotion in various environments,including confined spaces,unstructured terrains,and both inside and outside tubes.These results offer a novel strategy for designing and fabricating coiling-structured soft robots and highlight their potential applications in smart and multifunctional robotics.
基金supported in part by the National Key Research and Development Program of China(No.2022YFA1603402)in part by the National Natural Science Foundation of China(No.11875272)。
文摘Currently,three types of superconducting quadrupole magnets are used in particle accelerators:cos 2θ,CCT,and serpentine.However,all three coil configurations have complex spatial geometries,which make magnet manufacturing and strain-sensitive superconductor applications difficult.Compared with the three existing quadrupole coils,the racetrack quadrupole coil has a simple shape and manufacturing process,but there have been few theoretical studies.In this paper,the two-dimensional and three-dimensional analytical expressions for the magnetic field in coil-dominated racetrack superconducting quadrupole magnets are presented.The analytical expressions of the field harmonics and gradient are fully resolved and depend only on the geometric parameters of the coil and current density.Then,a genetic algorithm is applied to obtain a solution for the coil geometry parameters with field harmonics on the order of 10^(-4).Finally,considering the practical engineering needs of the accelerator interaction region,electromagnetic design examples of racetrack quadrupole magnets with high gradients,large apertures,and small apertures are described,and the application prospects of racetrack quadrupole coils are analyzed.
基金the Beijing Institute of Spacecraft System Engineering for providing topics,putting forward requirements and granting project funding。
文摘This paper proposes an electromagnetic coil topology and its control strategy,which can be incorporated into the electromagnetic docking device to achieve relative pose control in satellite docking.The target satellite has a main coil;the chaser satellite possesses a main coil of the same size accompanied by six and four evenly arranged secondary coils inside and outside the main coil,respectively.The coil on the target satellite is DC energized,while the currents in the coils of the chaser satellite are regulated.To remove the coupling between the pitch/yaw torque and translational force,the internal and external secondary coils of the chaser satellite interact with the main coil of the target satellite to perform the control of relative pitch/yaw and relative translation,respectively,so relative pose control can be achieved.The torque and force vectors exerted by the secondary coils of the chaser satellite are synthesized onto the pitch and yaw axes of the body frame.According to their spatial composition relationship,the formulas are proposed,which obtain the magnetic moment vectors of the coils from the set torques and forces.The controllers regulating pitch/yaw,translation,and distance utilize a three-loop cascaded structure that consists of an outer position loop,a middle velocity loop and an inner current loop.The control strategy is verified by dynamics simulation.
文摘The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the tube were explored experimentally,and water was employed as the working fluid.The numerical simulation was carried out using software programmer ANSYS Fluent 2019 R3 using the finite-volume approach.In the turbulent regime,six cross-sectionedwire coilswere analyzed,including:circular,rectangular,hexagonal,square,star shape,and triangle.The utilization of a tube with a wire coil has been shown to increase heat transfer rate and pump consumption.The results indicate a high level of concurrence,as the deviations are all below 8%.Compared with plain tube,the wire coils,according to the arrangement(TWD),gave the best PEC.The heat transfer enhancement ability of different cross sections follows the following order:StCS>RCS>HCS>SqCS>CCS>TCS.Also,the sequence of pump consumption for each cross section is as follows:RCS>StCS>SqCS>HCS>CCS>TCS.
基金Supported by Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)National Natural Science Foundation of China(Grant No.50805127)Fundamental Research Funds for the Central Universities of China(Grant No.2011QNA4002)
文摘The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.
基金supported by the Program for New Century Excellent Talents in University (No. NCET-06-0514), Chinathe Postdoctoral Science Foundation of China (Nos. 20081458 and 20080431306)
文摘The three-axis active attitude control method with a momentum wheel and magnetic coils for a pico-satellite is considered. The designed satellite is a 2.5 kg class satellite stabilized to nadir pointing. The momentum wheel performs a pitch-axis momentum bias, nominally spinning at a particular rate. Three magnetic coils are mounted perpendicularly along the body axis for precise attitude control through the switch control mechanism. Momentum wheel start up control, damping control and attitude acquisition control are considered. Simulation results show that the proposed combined control laws for the pico-satellite is reliable and has an appropriate accuracy under different separation conditions. The proposed strategy to start up the wheel after separation from the launch vehicle shows that its pitch momentum wheel can start up successfully to its nominal speed from rest, and the attitude convergence can be completed within several orbits, depending on separation conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60871001)
文摘For a superconducting magnet of magnetic resonance imaging (MRI), the novel approach presented in this paper allows the design of cylindrical gradient and shim coils of finite length. The method is based on identification of the weighting of harmonic components in the current distribution that will generate a magnetic field whose z-component follows a chosen spherical harmonic function. Mathematical expressions which relate the harmonic terms in the cylin- drical current distribution to spherical harmonic terms in the field expansion are established. Thus a simple matrix inversion approach can be used to design a shim coil of any order pure harmonic. The expressions providing a spherical harmonic decomposition of the field components produced by a particular cylindrical current distribution are novel. A stream function was applied to obtain the discrete wire distribution on the cylindrical-surface. This method does not require the setting of the target-field points. The discussion referring to matrix equations in terms of condition numbers proves that this novel approach has no ill-conditioned problems. The results also indicate that it can be used to design cylindrical-surface shim coils of finite length that will generate a field variation which follows a particular spherical harmonic over a reasonably large-sized volume.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61701500,51677187,and 51465024)
文摘A driver-pickup probe possesses better sensitivity and flexibility due to individual optimization of a coil.It is fre-quently observed in an eddy current(EC)array probe.In this work,a tilted non-coaxial driver-pickup probe above a multilayered conducting plate is analytically modeled with spatial transformation for eddy current nondestructive evalua-tion.Basically,the core of the formulation is to obtain the projection of magnetic vector potential(MVP)from the driver coil onto the vector along the tilted pickup coil,which is divided into two key steps.The first step is to make a projection of MVP along the pickup coil onto a horizontal plane,and the second one is to build the relationship between the pr,ojected MVP and the MVP along the driver coil.Afterwards,an analytical model for the case of a layered plate is established with the reflection and transmission theory of electromagnetic fields.The calculated values from the resulting model indicate good agreement with those from the finite element model(FEM)and experiments,which validates the developed analytical model.
文摘Polygonal coil systems are designed for increasing and more kinds of sensors and electromagnetic systems.This paper presents a method for calculating mutual inductance between polygonal coils including irregular polygons.Based on the Biot-Savart law,the method calculates mutual inductance by dividing a polygonal coil into finite wires,and expresses the magnetic induction intensity generated by the excitation coil as a function of the spatial position of each vertex of the coil.The calculation method of the feasible region of the objective function is updated and the calculation process is simplified,so the calculation accuracy is improved.For octagon coils arbitrarily positioned in space,the accuracy of the algorithm is verified by the simulation and experiment.
文摘ITER edge localized mode (ELM) coils are important components of the in-vessel coils (IVCs) and they are designed for mitigating or suppressing ELMs. The coils located on the vacuum vessel (VV) and behind the blanket are subjected to high temperature due to the nuclear heat from the plasma, the Ohmic heat induced by the working current and the thermal radiation from the environment. The water serves as coolant to remove the heat deposited into the coils. Based on the results of nuclear analysis, the thermal-hydraulic analysis is performed for the preliminary design of upper ELM coils using a rapid evaluation method based on 1D treatment. The thermal-hydraulic design and operating parameters including the water flow velocity are optimized. It is found that the rapid evaluation method based on 1D treatment is feasible and reliable. According to the rapid analysis method, the thermal hydraulic parameters of two water flow schemes are computed and proved similar to each other, providing an effective basis for the coil design. Finally, considering jointly the pressure drop requirement and the cooling capacity, the flow velocity is optimized to 5 m/s.
文摘The electromagnetic properties of high temperature superconductors(HTS)are characterized with the explicit intent to improve their integration in electric power systems.A tape and a coil made of Bismuth Strontium Calcium Copper Oxide(BSCCO)are considered in the presence of electromagnetically active materials in order to mimic properly the electromagnetic environment typical of electrical machines.The characterization consists of the determining the critical current and the AC losses at different values of the frequency and the transport current.The effects induced by the proximity of the active materials are studied and some related experimental issues are analyzedc.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61701515 and 61671458)the Postdoctoral Science Foundation,China(Grant No.2017M613367)+1 种基金the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3608)the Research Project of National University of Defense Technology,China(Grant No.ZK170204)
文摘Magnetic coils for specific requirements are widely used in modern quantum physics. In this study, a general analytical method of designing the shielded coils for generating an arbitrary axial magnetic field is proposed. The theoretical formula for an axial magnetic field generated by a single shielded coil is obtained and used to construct specific coils. The structural parameters of these coils are determined by fitting the theoretical formula with their specific requirements. The feasibility of this method is proved by realizing four concrete kinds of coils: uniform magnetic field generating coils, gradient magnetic field generating coils, asymmetrical uniform magnetic field generating coils, and parabolic magnetic field generating coils. The correctness of these theoretical results is demonstrated by both the finite element simulations and the relevant experimental results. Furthermore, the application of this method is of great significance for developing the quantum physics and quantum devices in future.
文摘In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production process,of which is designed a cooling experimental instrument in the end. The experiments show that high initial coolingtemperature, discontinuous cooling style, and long cooling time can improve mechanical property of cooling coilsand shorten cooling time. The CC coils experiments cover the different steel grades, so that CC process effects onhot-rolled coils may be predicted and controlled actively.
基金The project supported by the National Meg-Science Enineering Project of Chinese Government
文摘The HT-7U tokamak is a magnetically-confined full superconducting fusion device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wires made in Russian '. A single D-shaped toroidal field magnet coil will be tested for large and expensive magnets systems before assembling them in the toroidal configuration. This paper describes the layout of the instrumentation for a superconducting test facility based on the results of a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7U tokamak device. At the same time, the design of coil support structure in the test facility is particularly discussed in some detail.
文摘This paper is devoted to predict AC loss of cable in conduit conductor (CICC) which is of importance in the design of conductors. The consideration for the conductor's design and main parameters for the magnets are introduced. In order to attain a good accuracy in the calculation of AC losses, the field distribution within superconducting outsert should be considered. Calculation of the AC losses, including hysteresis losses and coupling losses, is conducted. An emphasis is put on the hysteresis loss during the ramp up of the current to the operational current (15.3 kA) and the coupling loss of the conductor in a power-down condition for insert. The results are obtained to be 74.9 kJ and 950 J for 40 T hybrid magnets, respectively. Based on the calculation, a brief analysis of losses effect on the conductor design and the operation of magnet is given for the purpose that the capacity of the cryogenertor can be evaluated and the stability regime can be improved in our future work on the hybrid magnets.
文摘Electrolytic detachable coils (EDC) have been the main embolic materi als for intracranial aneurysms. Liquid aneurysmal embolic materials represented by cellulose acetate polymer (CAP) are still in controversy. In this research, t he embolization results and pathological reactions after embolization of canine aneurysmal models with EDC or CAP were observed and compared. Methods. The canine aneurysmal models constructed by anastomosis of venous pouch es were randomly grouped. The aneurysms were respectively occluded with CAP and electrolytic detachable coils that was named by Wu electrolytic detachable coil (WEDC) and made by us. Angiogram follow ups were performed at 24 hour, 2 week , and 2 month after embolization. The occluded aneurysms were dissected in each stage for light microscopic, electron microscopic, and histochemical research. Results. The effect of embolization was significantly better with WEDC than that with CAP . Post embolized complications such as aneurysm rupture and stenosis of parent arteries could only be found in CAP group. Pathol ogical research showed that CAP mass could packed the aneurysms more densely tha n coils. Acute chemical damage of aneurysmal wall and inflammatory cell infiltra tion was prominently found in early stage after CAP embolization. Organization of thrombus inside aneurysms and formation of endothelial tissue over the orific es of aneurysmal necks could be found in both groups 2 months after embolization . But parts of coils might be exposed outside endothelial layer. Conclusions. EDC are still the most safe, efficient, and reliable instruments to embolize aneurysm. CAP should be improved further to solve the problem of stron g chemical corrosion and difficulty in control before it is widely used.
基金supported by National Magnetic Confinement Fusion Science Program of China(No.2009GB101005)
文摘A set of in-vessel resonant magnetic perturbation (RMP) coils for MHD instability suppression is proposed for the design of a HL-2M tokamak. Each coil is to be fed with a current of up to 5 kA, operated in a frequency range from DC to about I kHz. Stainless steel (SS) jacketed mineral insulated cables are proposed for the conductor of the coils. In-vessel coils must withstand large electromagnetic (EM) and thermal loads. The support, insulation and vacuum sealing in a very limited space are crucial issues for engineering design. Hence finite element calculations are performed to verify the design, optimize the support by minimizing stress caused by EM forces on the coil conductors and work out the temperature rise occurring on the coil in different working conditions, the corresponding thermal stress caused by the thermal expansion of materials is evaluated to be allowable. The techniques to develop the in-vessel RMP coils, such as support, insulation and cooling, are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51675506 and 51275504)the German Research Foundation(DFG)(Grant Nos.#ZA 422/5-1 and#ZA 422/6-1)
文摘A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy.Unlike the popular stream function method,the proposed method has design variables that are the distribution of conductive material.A voltage-driven transverse gradient coil is proposed to be used as micro-scale magnetic resonance imaging(MRI)gradient coils,thus avoiding introducing a coil-winding pattern and simplifying the coil configuration.The proposed method avoids post-processing errors that occur when the continuous current density is approximated by discrete wires in the stream function approach.The feasibility and accuracy of the method are verified through designing the z-gradient and y-gradient coils on a cylindrical surface.Numerical design results show that the proposed method can provide a new coil layout in a compact design space.
文摘High vacuum is required for Vacuum Pressure Impregnation (VPI) process of large coils used in cryogenic. The defects such as dry spots and over rich resins should be minimized in large superconducting coils used. Both sealing problems associated with the mold and over rich resin problems are eliminated by using vacuum bag mold method with which we can simplify the design of vacuum mold.