期刊文献+
共找到546篇文章
< 1 2 28 >
每页显示 20 50 100
Coupled thermo-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams 被引量:1
1
作者 Jianping LIU Zhaozhong YANG +2 位作者 Liangping YI Duo YI Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期663-682,共20页
A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution t... A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution terms between the cold fluid and the hot rock are derived.Heat transfer obeys Fourier's law,and porosity is used to relate the thermodynamic parameters of the fracture and matrix domains.The net pressure difference between the fracture and the matrix is neglected,and thus the fluid flow is modeled by the unified fluid-governing equations.The evolution equations of porosity and Biot's coefficient during hydraulic fracturing are derived from their definitions.The effect of coal cleats is considered and modeled by Voronoi polygons,and this approach is shown to have high accuracy.The accuracy of the proposed model is verified by two sets of fracturing experiments in multilayer coal seams.Subsequently,the differences in fracture morphology,fluid pressure response,and fluid pressure distribution between direct fracturing of coal seams and indirect fracturing of shale interlayers are explored,and the effects of the cluster number and cluster spacing on fracture morphology for multi-cluster fracturing are also examined.The numerical results show that the proposed model is expected to be a powerful tool for the fracturing design and optimization of deep coalbed methane. 展开更多
关键词 phase-field method thermo-hydro-mechanical coupling indirect fracturing cohesive zone model deep coal seam
在线阅读 下载PDF
Effect of Asphalt and Cement Grout on Adhesive and Cohesive Failure Behavior of Semi-Flexible Pavement Materials
2
作者 XIONG Zijia WANG Jingyuan +4 位作者 HONG Jinxiang ZHANG Lei GONG Minghui XU Zhenghong JIANG Lei 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1297-1309,共13页
This study aims to investigate the failure modes at the interface of semi-flexible pavement(SFP)materials.The cohesive and wetting properties of asphalt materials,as well as two types of grout(early strength cement gr... This study aims to investigate the failure modes at the interface of semi-flexible pavement(SFP)materials.The cohesive and wetting properties of asphalt materials,as well as two types of grout(early strength cement grout-ELS and high strength cement grout-CHS),were evaluated through pull-out tests and contact angle experiments.The rheological properties of the grout/asphalt mortar were assessed using dynamic shear rheometer(DSR)testing.The interaction coefficient,complex shear modulus,and complex viscosity coefficients of the grout/asphalt mortar were calculated to analyze the interaction between the grout and asphalt.Failure modes were identified through image analysis of semi-circular bending test(SCB)specimens.Results indicate that ELS specimens exhibit a lower grout/asphalt interface failure ratio compared to CHS specimens,due to the superior wettability and interaction of ELS grout.As the temperature increases,the proportions of cement fracture and aggregate failure decrease,while the proportion of asphalt cohesive failure surfaces increases.Furthermore,the bonding strength of SBS-modified asphalt with the grout exceeds that of pure asphalt. 展开更多
关键词 semi-flexible pavement interface ADHESION cohesive failure mode
原文传递
Macro-micro tests of cohesive soil under varied normal and shear stresses subjected to drying-wetting cycles
3
作者 Fangyue Luo Ga Zhang Yangping Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5893-5905,共13页
The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analy... The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analysis scheme is proposed in this paper to investigate the soil deformation behavior under the coupling of stress and drying-wetting cycles.A new device is developed based on CT(computerized tomography)workstation to apply certain normal and shear stresses on a soil specimen during drying-wetting cycles.A series of tests are conducted on a type of loess with various coupling of stress paths and drying-wetting cycles.At macroscopic level,stress sensor and laser sensor are used to acquire stress and strain,respectively.The shear and volumetric strain increase during the first few drying-wetting cycles and then become stable.The increase of the shear stress level or confining pressure would cause higher increase rate and the value of shear strain in the process of drying-wetting cycles.At microscopic level,the grayscale value(GSV)of CT scanning image is characterized as the proportion of soil particles to voids.A fabric state parameter is proposed to characterize soil microstructures under the influence of stress and drying-wetting cycle.Test results indicate that the macroand micro-responses show high consistence and relevance.The stress and drying-wetting cycles would both induce collapse of the soil microstructure,which dominants degradation of the soil mechanical properties.The evolution of the macro-mechanical property of soil exhibits a positive linear relationship with the micro-evolution of the fabric state parameter. 展开更多
关键词 cohesive soil Drying-wetting cycle Coupled loading Macro and micro test FABRIC
在线阅读 下载PDF
Exploring the mechanism of cohesive cross-layer fracture in laminated shale
4
作者 Lei Chen Haibo Wang +4 位作者 Guangqing Zhang Fengxia Li Tong Zhou Jia Cui Wei Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4966-4981,共16页
The development of geological lamination in shale reservoirs influences fracture propagation during hydraulic stimulation,and the fracture generation mechanism as it propagates through the laminated interface is close... The development of geological lamination in shale reservoirs influences fracture propagation during hydraulic stimulation,and the fracture generation mechanism as it propagates through the laminated interface is closely related to fracturing effects.In this paper,the laminated shale was selected to conduct three-point bending experiments using digital image correlation(DIC)and acoustic emission(AE)techniques,which revealed that the propagation path of cross-layer fractures exhibits dislocation features.The cohesive fracture mechanism of cross-layer fractures is investigated from the viewpoint of the fracture process zone(FPZ),which displays the characteristics of intermittence and dislocation during fracture development.A computational criterion for predicting the dislocation of cross-layer fracture at the interface is proposed,which shows that the maximum dislocation range does not exceed 72%of the FPZ length.Considering the mechanical differences between adjacent layers of laminated shale,the cohesive zone model of cross-layer fracture is discussed,from which the constitutive relationship and fracture energy during FPZ development are characterized,and the discontinuous nature of the constitutive relationship is found.This study improves the understanding of the geometry and cohesive fracture mechanism of the cross-layer fracture and provides valuable insights for field fracturing in shale reservoirs. 展开更多
关键词 Laminated shale Fracture process zone(FPZ) cohesive zone model Hydraulic fracturing Digital image correlation(DIC)
在线阅读 下载PDF
Multi-scale Numerical Simulations for Crack Propagation in NiTi Shape Memory Alloys by Molecular Dynamics-based Cohesive Zone Model
5
作者 LI Yunfei WANG Yuancen HE Qinshu 《Journal of Wuhan University of Technology(Materials Science)》 2025年第2期599-609,共11页
The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope ... The multi-scale modeling combined with the cohesive zone model(CZM)and the molecular dynamics(MD)method were preformed to simulate the crack propagation in NiTi shape memory alloys(SMAs).The metallographic microscope and image processing technology were employed to achieve a quantitative grain size distribution of NiTi alloys so as to provide experimental data for molecular dynamics modeling at the atomic scale.Considering the size effect of molecular dynamics model on material properties,a reasonable modeling size was provided by taking into account three characteristic dimensions from the perspective of macro,meso,and micro scales according to the Buckinghamπtheorem.Then,the corresponding MD simulation on deformation and fracture behavior was investigated to derive a parameterized traction-separation(T-S)law,and then it was embedded into cohesive elements of finite element software.Thus,the crack propagation behavior in NiTi alloys was reproduced by the finite element method(FEM).The experimental results show that the predicted initiation fracture toughness is in good agreement with experimental data.In addition,it is found that the dynamics initiation fracture toughness increases with decreasing grain size and increasing loading velocity. 展开更多
关键词 NiTi shape memory alloys multi-scale numerical simulation crack propagation the cohesive zone model molecular dynamics simulation
原文传递
基于扩展有限元法与cohesive模型的混凝土面板水力劈裂模拟
6
作者 王璟 《中国水能及电气化》 2025年第6期11-17,共7页
混凝土面板作为大坝的主要防渗体,它的完整性对工程正常运行至关重要。若面板上的裂缝在水压力作用下不断延伸直至扩展,则会威胁到大坝结构的整体安全。文章利用扩展有限元法求解不连续问题的独特优势,模拟了水压力作用下混凝土面板中... 混凝土面板作为大坝的主要防渗体,它的完整性对工程正常运行至关重要。若面板上的裂缝在水压力作用下不断延伸直至扩展,则会威胁到大坝结构的整体安全。文章利用扩展有限元法求解不连续问题的独特优势,模拟了水压力作用下混凝土面板中单裂缝不同方位角的开裂过程,以及双裂缝的相互干扰过程,并结合cohesive黏聚力单元描述裂缝与内部天然裂缝相交的破坏行为。通过分析混凝土面板开裂时孔隙水压力以及位移的演化规律,验证该方法的有效性。结果表明,搭建的XFEM和cohesive模型平台具备模拟混凝土面板水力劈裂破坏的能力,可为试验过程提供一定的参考依据。 展开更多
关键词 混凝土面板堆石坝 cohesive单元 扩展有限元法 水力劈裂
在线阅读 下载PDF
Separation work analysis of cohesive law and consistently coupled cohesive law
7
作者 何铭华 辛克贵 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第11期1437-1446,共10页
An appropriate coupled cohesive law for predicting the mixed mode failure is established by combining normal separation and tangential separation of surfaces in the cohesive zone model (CZM) and the cohesive element... An appropriate coupled cohesive law for predicting the mixed mode failure is established by combining normal separation and tangential separation of surfaces in the cohesive zone model (CZM) and the cohesive element method. The Xu-Needleman exponential cohesive law with the fully shear failure mechanism is one of the most popular models. Based on the proposed consistently coupled rule/principle, the Xu-Needleman law with the fully shear failure mechanism is proved to be a non-consistently coupled cohesive law by analyzing the surface separation work. It is shown that the Xu-Needleman law is only valid in the mixed mode fracture when the normal separation work equals the tangential separation work. Based on the consistently coupled principle and the modification of the Xu-Needleman law, a consistently coupled cohesive (CCC) law is given. It is shown that the proposed CCC law has already overcome the non-consistency defect of the Xu-Needleman law with great promise in mixed mode analyses. 展开更多
关键词 cohesive element cohesive zone model (CZM) cohesive law separation work analysis consistently coupled rule/principle consistently Coupled cohesive (CCC) law non-consistently coupled cohesive law
在线阅读 下载PDF
基于Voronoi建模和Cohesive单元的PBX细观力学模型
8
作者 李云欣 朱晓燕 +2 位作者 袁洪魏 文乾乾 唐维 《火炸药学报》 EI CAS CSCD 北大核心 2024年第7期632-639,I0003,共9页
针对PBX的细观力学模型存在模型结构与真实PBX细观形貌不符、破坏行为描述不全面(仅考虑界面脱粘)、研究对象单一(大多针对PBX-9501)等问题,建立了基于Voronoi建模和Cohesive单元的PBX细观力学模型。首先,基于光学显微镜下的细观结构图... 针对PBX的细观力学模型存在模型结构与真实PBX细观形貌不符、破坏行为描述不全面(仅考虑界面脱粘)、研究对象单一(大多针对PBX-9501)等问题,建立了基于Voronoi建模和Cohesive单元的PBX细观力学模型。首先,基于光学显微镜下的细观结构图,采用Voronoi方法构建了更贴近实际形貌的PBX炸药细观模型;然后,采用内聚力有限元方法在炸药晶体内部、黏结剂内部及炸药颗粒/黏结剂界面处都引入了Cohesive单元,以在二维尺度上实现任意路径破坏行为的模拟;最后,针对某HMX基-F2311黏结剂炸药和某HMX基-F2313黏结剂炸药标定了模型参数,模拟了这两种炸药的准静态拉伸行为。结果表明,两种炸药数值模拟的拉伸变形曲线、破坏应力、破坏应变都与试验数据吻合良好,表明该模型不仅适用于不同PBX炸药材料(线弹性PBX、非线性PBX)的变形行为描述,还可以分析PBX炸药在拉伸破坏过程中的细观机理,刻画不同PBX炸药的裂纹萌生、扩展和贯穿的过程。 展开更多
关键词 物理化学 高聚物黏结炸药 PBX 细观力学 拉伸强度 Voronoi建模 代表体积单元(RVE) cohesive单元
在线阅读 下载PDF
Extended finite element-based cohesive zone method for modeling simultaneous hydraulic fracture height growth in layered reservoirs 被引量:1
9
作者 Lei Yang Baixi Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2960-2981,共22页
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy... In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed. 展开更多
关键词 Hydraulic fracturing Layered reservoir Simultaneous height growth In situ stress Fracture spacing Extended finite element method(XFEM) cohesive zone method(CZM)
在线阅读 下载PDF
Improvements of cohesive zone model on artificial compliance and discontinuous force
10
作者 Ala Tabiei Li Meng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第9期47-67,共21页
The cohesive zone model(CZM)has been used widely and successfully in fracture propagation,but some basic problems are still to be solved.In this paper,artificial compliance and discontinuous force in CZM are investiga... The cohesive zone model(CZM)has been used widely and successfully in fracture propagation,but some basic problems are still to be solved.In this paper,artificial compliance and discontinuous force in CZM are investigated.First,theories about the cohesive element(local coordinate system,stiffness matrix,and internal nodal force)are presented.The local coordinate system is defined to obtain local separation;the stiffness matrix for an eight-node cohesive element is derived from the calculation of strain energy;internal nodal force between the cohesive element and bulk element is obtained from the principle of virtual work.Second,the reason for artificial compliance is explained by the effective stiffnesses of zero-thickness and finite-thickness cohesive elements.Based on the effective stiffness,artificial compliance can be completely removed by adjusting the stiffness of the finite-thickness cohesive element.This conclusion is verified from 1D and 3D simulations.Third,three damage evolution methods(monotonically increasing effective separation,damage factor,and both effective separation and damage factor)are analyzed.Under constant unloading and reloading conditions,the monotonically increasing damage factor method without discontinuous force and healing effect is a better choice than the other two methods.The proposed improvements are coded in LS-DYNA user-defined material,and a drop weight tear test verifies the improvements. 展开更多
关键词 cohesive zone model Stiffness matrix Artificial compliance Damage evolution method Discontinuous force
原文传递
Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction
11
作者 Chengbao Hu Shilin Gong +3 位作者 Bin Chen Zhongling Zong Xingwang Bao Xiaojian Ru 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期997-1015,共19页
Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fideli... Strain localization frequently occurs in cohesive materials with friction(e.g.,composites,soils,rocks)and is widely recognized as a fundamental cause of progressive structural failure.Nonetheless,achieving high-fidelity simulation for this issue,particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones,remains significantly constrained.In response,this study introduces an integrated algorithmwithin the finite element framework,merging a coupled cohesive zone model(CZM)with the nonlinear augmented finite elementmethod(N-AFEM).The coupledCZMcomprehensively describes tension-compression and compressionshear failure behaviors in cohesive,frictional materials,while the N-AFEM allows nonlinear coupled intraelement discontinuities without necessitating extra nodes or nodal DoFs.Following CZM validation using existing experimental data,this integrated algorithm was utilized to analyze soil slope failure mechanisms involving a specific tensile strength and to assess the impact of mechanical parameters(e.g.,tensile strength,weighting factor,modulus)in soils. 展开更多
关键词 FEM analysis strong discontinuity nonlinear soil rupture cohesive zone model tension-compression-shear coupling
在线阅读 下载PDF
Investigation of FRP and SFRC Technologies for Efficient Tunnel Reinforcement Using the Cohesive Zone Model
12
作者 Gang Niu Zhaoyang Jin +1 位作者 Wei Zhang Yiqun Huang 《Structural Durability & Health Monitoring》 EI 2024年第2期161-179,共19页
Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economi... Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economical,and robust tunnel reinforcement techniques.This paper explores fiber reinforced polymer(FRP)and steel fiber reinforced concrete(SFRC)technologies,which have emerged as viable solutions for enhancing tunnel structures.FRP is celebrated for its lightweight and high-strength attributes,effectively augmenting load-bearing capacity and seismic resistance,while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments.Nonetheless,current research predominantly focuses on experimental analysis,lacking comprehensive theoretical models.To bridge this gap,the cohesive zone model(CZM),which utilizes cohesive elements to characterize the potential fracture surfaces of concrete/SFRC,the rebar-concrete interface,and the FRP-concrete interface,was employed.A modeling approach was subsequently proposed to construct a tunnel segment model reinforced with either SFRC or FRP.Moreover,the corresponding mixed-mode constitutive models,considering interfacial friction,were integrated into the proposed model.Experimental validation and numerical simulations corroborated the accuracy of the proposed model.Additionally,this study examined the reinforcement design of tunnel segments.Through a numerical evaluation,the effectiveness of innovative reinforcement schemes,such as substituting concrete with SFRC and externally bonding FRP sheets,was assessed utilizing a case study from the Fuzhou Metro Shield Tunnel Construction Project. 展开更多
关键词 Tunnel segment FRP SFRC cohesive zone model constitutive model fracture process
在线阅读 下载PDF
A new cyclic cohesive zone model for fatigue damage analysis of weldedvessel
13
作者 Changyuan Shen Xiaozhou Xia +1 位作者 Dake Yi Zhongmin Xiao 《Theoretical & Applied Mechanics Letters》 CSCD 2024年第6期450-459,共10页
A new cyclic cohesive zone fatigue damage model is proposed to address the fatigue problem spanning highand low cycle stages.The new damage model is integrated with the damage extrapolation technique to improvecalcula... A new cyclic cohesive zone fatigue damage model is proposed to address the fatigue problem spanning highand low cycle stages.The new damage model is integrated with the damage extrapolation technique to improvecalculation efficiency.The model’s effectiveness in regulating the low-cycle fatigue evolution rate,overall fatiguedamage evolution rate,and stress level at the fatigue turning point is assessed through the comparison of the S-Ncurves.The fatigue damage model’s high precision is proved based on the minor deviation of stress at the turningpoint of the S-N curve from the actual scenario.Finally,the fatigue damage evolution is simulated consideringthe effects of pre-load pressure and welding residual stress.It is observed that laser welding induces a significantresidual tensile stress,accelerating fatigue damage evolution,while compressive loading impedes fatigue damageprogression. 展开更多
关键词 Cyclic cohesive zone model Fatigue crack propagation Welding residual stress Low-cycle fatigue Welded vessel
在线阅读 下载PDF
基于XFEM与Cohesive模型分析PBX裂纹产生与扩展 被引量:16
14
作者 黄西成 李尚昆 +4 位作者 魏强 田荣 陈成军 王理想 柳明 《含能材料》 EI CAS CSCD 北大核心 2017年第8期694-700,共7页
利用扩展有限元法(XFEM)分析PBX-9502带孔板状试件在整体压缩下由局部裂纹萌生到裂纹扩展全过程的开裂破坏机理。采用应力状态相关的强度面、非关联流动法则及Cohesive模型,描述了材料在复杂应力状态下的非线性本构行为以及材料的破坏... 利用扩展有限元法(XFEM)分析PBX-9502带孔板状试件在整体压缩下由局部裂纹萌生到裂纹扩展全过程的开裂破坏机理。采用应力状态相关的强度面、非关联流动法则及Cohesive模型,描述了材料在复杂应力状态下的非线性本构行为以及材料的破坏行为。进行了数值模拟结果与美国洛斯阿拉莫斯国家实验室(LANL)试验结果的对比。结果表明,含孔洞的平板在整体压应力环境下孔洞周围产生局部拉伸应力,这种拉伸条件导致局部裂纹萌生。数值模拟的裂纹发展趋势与试验结果相吻合,包括裂纹时程的整体走势和拐点、启裂时刻、裂纹初期扩展速度等。基于扩展有限元方法和内聚模型法,可模拟高聚物粘结炸药(PBX)含能材料的裂纹萌生、扩展。 展开更多
关键词 扩展有限元(XFEM) cohesive模型 高聚物粘结炸药(PBX) 裂纹 扩展 机理
在线阅读 下载PDF
基于Cohesive单元法的弃置井水泥塞-套管界面胶结失效数值模拟 被引量:9
15
作者 蒋记伟 李军 +2 位作者 柳贡慧 连威 杨宏伟 《钻井液与完井液》 CAS 北大核心 2020年第3期351-357,共7页
水泥塞-套管界面胶结失效对弃置井井筒完整性提出了严峻挑战。考虑地下流体与水泥塞的流固耦合作用,基于cohesive单元方法,建立水泥塞-套管-水泥环-地层系统三维有限元模型,模拟垂直井水泥塞-套管界面裂缝剥离过程,研究地应力对界面裂... 水泥塞-套管界面胶结失效对弃置井井筒完整性提出了严峻挑战。考虑地下流体与水泥塞的流固耦合作用,基于cohesive单元方法,建立水泥塞-套管-水泥环-地层系统三维有限元模型,模拟垂直井水泥塞-套管界面裂缝剥离过程,研究地应力对界面裂缝损伤演化的影响,并分析水平地应力、水泥塞力学参数及界面性质对裂缝剥离高度的影响。结果显示:水平地应力均匀时剥离裂缝沿着整个界面圆周延伸且高度相等,水平地应力非均匀时剥离裂缝倾向于沿着界面某一圆周角扩展且在最大水平地应力方向具有较大的高度;水泥塞弹性模量从30 GPa减小到1 GPa,裂缝剥离高度降低9.3 m,临界法向强度从0.25 MPa增大到2.0 MPa,裂缝剥离高度降低6.5 m,表明较低的弹性模量及较大的临界法向强度有利于减小水泥塞-套管界面胶结失效的风险;水泥塞泊松比从0.35减小到0.10,裂缝剥离高度仅降低2.0 m,临界剪切强度从0.5 MPa增加到4.0 MPa,裂缝剥离高度仅降低3.3 m,表明泊松比和临界剪切强度对界面胶结失效影响较小。建立的模型能够为水泥浆配方优选和井筒弃置工艺优化提供指导。 展开更多
关键词 弃置井 水泥塞-套管界面 胶结失效 裂缝剥离高度 cohesive单元方法 数值模拟
在线阅读 下载PDF
Numerical study of fatigue damage of asphalt concrete using cohesive zone model 被引量:5
16
作者 金光来 黄晓明 +1 位作者 张苏龙 梁彦龙 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期431-435,共5页
In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is es... In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is established to indicate the gradual degradation of cohesive properties of asphalt concrete under cyclic loading. Then the model is implemented in the finite element software ABAQUS through a user-defined subroutine. Based on the proposed model, an indirect tensile fatigue test is finally simulated. The fatigue lives obtained through numerical analysis show good agreement with laboratory results. Fatigue damage accumulates in a nonlinear manner during the cyclic loading process and damage initiation phase is the major part of fatigue failure. As the stress ratio increases, the time of the steady damage growth stage decreases significantly. It is found that the proposed fatigue damage evolution model can serve as an accurate and efficient tool for the prediction of fatigue damage of asphalt concrete. 展开更多
关键词 fatigue damage indirect tensile fatigue test asphalt concrete cohesive zone model numerical simulation finite element method
在线阅读 下载PDF
基于Cohesive单元的石拱桥主拱圈二相数值模拟方法 被引量:2
17
作者 赵超 戴志成 +1 位作者 钟新谷 陈倩倩 《工程力学》 EI CSCD 北大核心 2021年第12期97-106,117,共11页
为解决石砌体材料非均质的描述问题,提出一种基于Cohesive单元的石拱桥主拱圈两相数值模拟方法。视石砌体为两相材料(砌块和砌缝),采用实体单元模拟砌块并引入非线性本构描述其破坏行为,在相邻砌块间插入Cohesive单元考虑砌缝砂浆的剪... 为解决石砌体材料非均质的描述问题,提出一种基于Cohesive单元的石拱桥主拱圈两相数值模拟方法。视石砌体为两相材料(砌块和砌缝),采用实体单元模拟砌块并引入非线性本构描述其破坏行为,在相邻砌块间插入Cohesive单元考虑砌缝砂浆的剪切和拉伸破坏。通过室内试验与数值模拟对比验证方法的有效性及适用性,分析了砌缝抗剪摩擦系数μ、加载位置等敏感参数对拱桥承载力的影响。结果表明:基于Cohesive单元的石砌体两相数值模型,可以有效描述石砌体材料的非均匀性及石拱桥的破坏过程(尤其是砌缝剪切滑移破坏行为),可为石拱桥极限承载力评估提供重要信息,如荷载-位移曲线、破坏模式等。此外,研究结果还发现主拱圈破坏机制由拱的受弯、受剪特性决定,并与砌缝抗剪摩擦系数μ强相关。 展开更多
关键词 桥梁工程 二相数值模型 cohesive单元 石拱桥 破坏机制
在线阅读 下载PDF
Delamination analysis of woven fabrication laminates using cohesive zone model 被引量:3
18
作者 Mohsen Moslemi Mohammadreza Khoshravan azar 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期27-38,共12页
A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determ... A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determined from the single lap joint(SLJ) and end notch flexure(ENF) test, respectively. In order to verify their adequacy, a cohesive zone model simulation based on interface finite elements was performed. A closed form solution for determination of the penalty stiffness parameter was proposed. Modified form of Park-Paulino-Roesler traction-separation law was provided and conducted altogether with trapezoidal and bilinear mixed-mode damage models to simulate damage using Abaqus cohesive elements. It was observed that accurate damage prediction and numerical convergence were obtained using the proposed penalty stiffness. Comparison between three damage models reveals that good simulation of fracture process zone and delamination prediction were obtained using the modified PPR model as damage model. Cohesive zone length as a material property was determined. To ensure the sufficient dissipation of energy, it was recommended that at least 4 elements should span cohesive zone length. 展开更多
关键词 cohesive zone model DELAMINATION cohesive strength finite element prediction
在线阅读 下载PDF
Survey Research into Cohesive Device Misuses in Business English Writing
19
作者 刘竹林 张莹悦 徐伟 《海外英语》 2018年第5期49-52,共4页
Cohesive devices in students’business English writing are regarded as the object of the research.Based on Haliday and Hasan’s cohesion theory,this paper introduces commonly-used cohesive devices in English writing.W... Cohesive devices in students’business English writing are regarded as the object of the research.Based on Haliday and Hasan’s cohesion theory,this paper introduces commonly-used cohesive devices in English writing.With the method of quantitative data,use and misuse frequency of cohesive devices in students’writings can be known.The paper will also analyze why misuses happen through qualitative data analysis and explore right ways of using cohesive devices. 展开更多
关键词 cohesive devices business English writing cohesion theory misuses
在线阅读 下载PDF
Analysis on the Cohesive and Coherent Features of John Kennedy's First Inaugural Address
20
作者 范莹芳 《海外英语》 2013年第2X期224-228,共5页
John Kennedy's first inaugural address is one of the widely appreciated speeches worldwide. It is famous not only for calling up the American people to well serve the country, but also for its extraordinary lingui... John Kennedy's first inaugural address is one of the widely appreciated speeches worldwide. It is famous not only for calling up the American people to well serve the country, but also for its extraordinary linguistic power to arouse the listeners' emotions, which lies to a great extent in the marvelous employment of the cohesive and coherent devices in the process of its delivery. Cohesion and coherence are two elementary and significant concepts in the theoretical system of discourse analysis. There-fore, they play an important role in the structuring, arrangement, interpretation and analysis of a discourse. In this sense, it is significant to analyze the cohesive and coherent features of John Kennedy's first inaugural address in order to obtain a penetrating comprehension of the speech in many aspects. A detailed analysis on the cohesive and coherent features of the speech has been conducted in this paper. In the aspect of cohesion in the address, the devices employed fall into two categories: structural cohesion and non-structural cohesion. Structural cohesive devices used in the discourse are mainly grammatical cohesion and lexical cohesion like repetition, ellipsis, conjunction, etc. Non-structural methods adopted in the speech are transitivity, mood and modality, thematic progression, parallel structure and so on. In the aspect of coherence, five levels of coherent methods have been employed, namely, lexical level, syntax level, semantic level, phonological level and social semiotic level. The neat intermingling of the cohesive and coherent methods function cooperatively and lead to the smooth going of the text. 展开更多
关键词 cohesive COHERENT John Kennedy’s FIRST inaugural a
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部