Biological invasions have become recognized as one of the greatest threats to ecosystems.Codium,a genus of invasive green algae,has frequent global outbreaks and damages local marine ecosystems.It is now generally acc...Biological invasions have become recognized as one of the greatest threats to ecosystems.Codium,a genus of invasive green algae,has frequent global outbreaks and damages local marine ecosystems.It is now generally accepted that light is one of the main factors affecting the luxuriant growth of macroalgae such as Codium.In this study,to investigate the invasive photo-adaptation strategy of Codium fragile,the photo-adaptation characteristics of C.fragile and Codium.cylindricum from the Nan’ao Island of China were compared and explored.The effect of light intensity on the photosynthetic properties of the two species was investigated:the maximum quantum yield of photosystemⅡ(Fv/Fm)of C.fragile was significantly higher at low light intensity.At a light intensity of 90μmol/(m^(2)·s),maximum relative electron transport rate(rETR_(max))of the thalli was maximum,and the minimum saturating irradiance(Ek)was significantly increased.The photosynthetic rate(αvalue)of thalli was highest at a light intensity of 30μmol/(m^(2)·s).The photochemical quenching(qP)was enhanced but non-photochemical quenching(NPQ)was reduced at high light intensities.As for C.cylindricum,the optimal photochemical efficiency of the thalli at low light intensity was higher.High light intensity significantly reduced the rETR of the thalli.At low light intensity,αwas significantly higher,Ek was significantly lower,and NPQ was also significantly decreased.The response relationship between light acclimation and antioxidant capacity of the thalli of two species of Codium was investigated:there was no significant effect of light intensity variation on the total antioxidant capacity of C.fragile.In the case of C.cylindricum,the degree of membrane lipid peroxidation was significantly increased at low light intensity,and its antioxidant capacity was significantly reduced when the light intensity was too high or too low.It can be hypothesized that the self-protection ability of C.fragile may be stronger than that of C.cylindricum under low and high light intensities,which is closely related to the strong invasiveness of C.fragile.展开更多
Peptide composition and arrangement of 4 major light-harvesting complexes LHCP 1-3 and LHCP 3′ isolated from siphonous green algae (Codium fragile (Sur.) Hariot.) were investigated. LHCP 1 showed five main pep...Peptide composition and arrangement of 4 major light-harvesting complexes LHCP 1-3 and LHCP 3′ isolated from siphonous green algae (Codium fragile (Sur.) Hariot.) were investigated. LHCP 1 showed five main peptides, 34.4, 31.5, 29.5, 28.2 and 26.5 kD in SDS-PAGE, the 34.4 and 31.5 kD peptides were never found in higher plants. LHCP 3 contained the other four kinds of LHCP 1 peptides except 34.4 kD, while LHCP 3′ consisted of only 28.2 and 26.5 kD peptides. We found that 34.4, 28.2 and 26.5 kD peptides were easy to decompose from LHCP 1 when subjected to SDS-PAGE without pretreatment. They might be located at the exterior of LHCP 1, while the 31.5 and 29.5 kD peptides were at the central part. The 28.2 and 26.5 kD peptides often occurred in CPa, the center complex of PSⅡ. They are possibly the LHCⅡ peptides tightly associated with CCⅡ. According to the results described above, a peptide map of LHCP 1 was sketched.展开更多
Objective:To evaluate whether the methanol extract of Codium fragile(MECF) regulates tumor necrosis factor-α(TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9(...Objective:To evaluate whether the methanol extract of Codium fragile(MECF) regulates tumor necrosis factor-α(TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9(MMP-9).Methods:Reverse transcriptionpolymerase chain reaction(RT-PCR) and western blot analysis were performed to analyze the expression of MMP-9 and nuclear factor-κB(NF-κB) subunits,p65 and p50,and IκB in MDA-MB-231 cells.3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide(MTT) assay was used for cell viability.MMP-9 activity and invasion were measured by gelatin zymography and a matrigel invasion assay,respectively.NF- κB activity was measured by an electrophoretic mobility shift assay and luciferase activity.Results:MECF had no effects on cell viability up to a concentration of 100 μg/mL in human breast cancer MDA-MB-231 cells regardless of the presence of TNF-α.MDA-MB-231 cells that were stimulated with TNF-α showed a marked increase of invasion compared to the untreated control,whereas pretreatment with MECF downregulated the TNF-α-induced invasion of MDA-MB-231 cells.Additionally,zymography,western blot analysis,and reverse transcriptase-polymerase chain reaction(RT-PCR) confirmed that MECF decreased TNF-α-induced MMP-9 expression and activity which is a key regulator for cancer invasion.According to an electrophoretic morbidity shift assay,pretreatment with MECF in MDA-MB-231 cells significantly decreased the TNF-α-induced DNA-binding activity of nuclear factor- κB(NF- κB),which is an important transcription factor for regulating cancer invasion-related genes such as MMP-9.Furthermore,treatment with MECF sustained the expression of p65 and p50 in response to TNF-α in the cytosolic compartment.The luciferase assay demonstrated that MECF attenuated TNF-α-induced NF- κB luciferase activity.Conclusion:MECF exhibited its antiinvasive capability by downregulating TNF-α-induced MMP-9 expression,resulting from the suppression of NF- κB activity in the human breast cancer cell line MDA-MB-231.展开更多
Codium, one of the largest marine green algal genera, is difficult to delimit species boundary accurately based on morphological identification only. DNA barcoding is a powerful tool for discriminating species of seaw...Codium, one of the largest marine green algal genera, is difficult to delimit species boundary accurately based on morphological identification only. DNA barcoding is a powerful tool for discriminating species of seaweeds. The plastid elongation factor TU (tufA) is considered as maker to perform DNA barcoding of green algal species than rbcL gene due to universality and rapid evolution rate. We conducted DNA barcoding application to Codium specimens from the Jeju Island, Korea to overcome the limit of morphological identification and to confirm the species diversity. As a result of applying tufA marker, we newly generated fifty-five tufA barcodes to resolve eight species. TufA marker exhibited 6.1%–21.8% interspecific divergences, wider than the gap of rbcL exon 1, 3.5%–11.5%. Molecular analysis of rbcL exon 1 sequences of Codium revealed eight distinct species like tufA analysis separated in five phylogenetic groups. DNA barcoding of the genus Codium using tufA marker is more helpful to overcome the limit of morphological identification, and this is more potential to reveal cryptic species and to resolve the relationships among subspecies than rbcL analysis alone. The complement of tufA barcoding and rbcL analyses including morphology for the genus Codium in the northwestern Pacific will give much more reliable achievement for discovering species diversity and resolving the phylogenetic relationships.展开更多
It has been widely recognized that biological invasion has become one of the greatest threats to the ecosystem.Codium fragile is an invasive species which exhibits a variety of attributes like parthenogenesis,winter f...It has been widely recognized that biological invasion has become one of the greatest threats to the ecosystem.Codium fragile is an invasive species which exhibits a variety of attributes like parthenogenesis,winter fragment,and vegetative reproduction;and therefore,it has become a successful invader,colonizing most subtropical regions.In China’s southeast coastal aquaculture waters,the green algal bloom caused by C.fragile will probably become a serious problem.In order to understand more details about the species,an experiment focused on its reproductive characteristics was conducted using culture established from a sample collected in the aquaculture raft of the Nan’ao Island in the South China Sea.The results showed that there were two types of gametes resembling aplanospores and zoospores respectively,both of which were able to germinate.During the gametes liberation,a long mucilage tube was formed out of the mouth of the gametangium assisting dispersal of gametes away from the parent plant.This tube was adapted not only to its surrounding flowing water environment but also to its parent plant’s outer gelatinous structure.In general,the optimum temperature for gametes release and germination was 15-20℃ and 15℃,respectively,which corresponded to the local offshore marine water.The plant was observed to produce vegetative buds under favourable reproductive conditions which were called propagules.They were capable of developing into filamentous thalli.The results will provide some scientific evidences for revealing the biological mechanism of bloom and control strategies of invasive green algae.展开更多
The cell organelles of the coenocytic alga Codium fragile (Sur.) Harlot aggregated rapidly and protoplasts were formed when its protoplasm was extruded out in seawater. Continuous observation showed that there were ...The cell organelles of the coenocytic alga Codium fragile (Sur.) Harlot aggregated rapidly and protoplasts were formed when its protoplasm was extruded out in seawater. Continuous observation showed that there were long and gelatinous threads connecting the cell organelles. The threads contracted, and thus the cell organelles aggregated into protoplasmic masses. The enzyme digestion experiments and Coomassie Brilliant Blue and Anthrone stainings showed that the long and gelatinous threads involved in the formation of the protoplasts might include protein and saccharides as structure components. Nile Red staining indicated that the protoplast primary envelope was non-lipid at first, and then lipid materials integrated into its surface gradually. The fluorescent brightener staining indicated that the cell wall did not regenerate in the newly formed protoplasts and they all disintegrated within 72 h after formation. Transmission electron microscopy of the cell wall of wild C. fragile showed electron-dense material embedded in the whole cell wall at regular intervals. The experiments indicated that C. fragile would be a suitable model alga for studying the formation of protoplasts.展开更多
基金The National Natural Science Foundation of China under contract Nos 32270219 and 31970216.
文摘Biological invasions have become recognized as one of the greatest threats to ecosystems.Codium,a genus of invasive green algae,has frequent global outbreaks and damages local marine ecosystems.It is now generally accepted that light is one of the main factors affecting the luxuriant growth of macroalgae such as Codium.In this study,to investigate the invasive photo-adaptation strategy of Codium fragile,the photo-adaptation characteristics of C.fragile and Codium.cylindricum from the Nan’ao Island of China were compared and explored.The effect of light intensity on the photosynthetic properties of the two species was investigated:the maximum quantum yield of photosystemⅡ(Fv/Fm)of C.fragile was significantly higher at low light intensity.At a light intensity of 90μmol/(m^(2)·s),maximum relative electron transport rate(rETR_(max))of the thalli was maximum,and the minimum saturating irradiance(Ek)was significantly increased.The photosynthetic rate(αvalue)of thalli was highest at a light intensity of 30μmol/(m^(2)·s).The photochemical quenching(qP)was enhanced but non-photochemical quenching(NPQ)was reduced at high light intensities.As for C.cylindricum,the optimal photochemical efficiency of the thalli at low light intensity was higher.High light intensity significantly reduced the rETR of the thalli.At low light intensity,αwas significantly higher,Ek was significantly lower,and NPQ was also significantly decreased.The response relationship between light acclimation and antioxidant capacity of the thalli of two species of Codium was investigated:there was no significant effect of light intensity variation on the total antioxidant capacity of C.fragile.In the case of C.cylindricum,the degree of membrane lipid peroxidation was significantly increased at low light intensity,and its antioxidant capacity was significantly reduced when the light intensity was too high or too low.It can be hypothesized that the self-protection ability of C.fragile may be stronger than that of C.cylindricum under low and high light intensities,which is closely related to the strong invasiveness of C.fragile.
文摘Peptide composition and arrangement of 4 major light-harvesting complexes LHCP 1-3 and LHCP 3′ isolated from siphonous green algae (Codium fragile (Sur.) Hariot.) were investigated. LHCP 1 showed five main peptides, 34.4, 31.5, 29.5, 28.2 and 26.5 kD in SDS-PAGE, the 34.4 and 31.5 kD peptides were never found in higher plants. LHCP 3 contained the other four kinds of LHCP 1 peptides except 34.4 kD, while LHCP 3′ consisted of only 28.2 and 26.5 kD peptides. We found that 34.4, 28.2 and 26.5 kD peptides were easy to decompose from LHCP 1 when subjected to SDS-PAGE without pretreatment. They might be located at the exterior of LHCP 1, while the 31.5 and 29.5 kD peptides were at the central part. The 28.2 and 26.5 kD peptides often occurred in CPa, the center complex of PSⅡ. They are possibly the LHCⅡ peptides tightly associated with CCⅡ. According to the results described above, a peptide map of LHCP 1 was sketched.
基金supported by Basic Science Research Program(2015R1D1A1A01060538)through the National Research Foundation of Korea(NRF)funded from the Ministry of Education,Science and Technology of Korea
文摘Objective:To evaluate whether the methanol extract of Codium fragile(MECF) regulates tumor necrosis factor-α(TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9(MMP-9).Methods:Reverse transcriptionpolymerase chain reaction(RT-PCR) and western blot analysis were performed to analyze the expression of MMP-9 and nuclear factor-κB(NF-κB) subunits,p65 and p50,and IκB in MDA-MB-231 cells.3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide(MTT) assay was used for cell viability.MMP-9 activity and invasion were measured by gelatin zymography and a matrigel invasion assay,respectively.NF- κB activity was measured by an electrophoretic mobility shift assay and luciferase activity.Results:MECF had no effects on cell viability up to a concentration of 100 μg/mL in human breast cancer MDA-MB-231 cells regardless of the presence of TNF-α.MDA-MB-231 cells that were stimulated with TNF-α showed a marked increase of invasion compared to the untreated control,whereas pretreatment with MECF downregulated the TNF-α-induced invasion of MDA-MB-231 cells.Additionally,zymography,western blot analysis,and reverse transcriptase-polymerase chain reaction(RT-PCR) confirmed that MECF decreased TNF-α-induced MMP-9 expression and activity which is a key regulator for cancer invasion.According to an electrophoretic morbidity shift assay,pretreatment with MECF in MDA-MB-231 cells significantly decreased the TNF-α-induced DNA-binding activity of nuclear factor- κB(NF- κB),which is an important transcription factor for regulating cancer invasion-related genes such as MMP-9.Furthermore,treatment with MECF sustained the expression of p65 and p50 in response to TNF-α in the cytosolic compartment.The luciferase assay demonstrated that MECF attenuated TNF-α-induced NF- κB luciferase activity.Conclusion:MECF exhibited its antiinvasive capability by downregulating TNF-α-induced MMP-9 expression,resulting from the suppression of NF- κB activity in the human breast cancer cell line MDA-MB-231.
基金A grant from the National Institute of Biological Resources(NIBR)funded by the Ministry of Environment(MOE) of the Republic of Korea under contract No.2013-02-013
文摘Codium, one of the largest marine green algal genera, is difficult to delimit species boundary accurately based on morphological identification only. DNA barcoding is a powerful tool for discriminating species of seaweeds. The plastid elongation factor TU (tufA) is considered as maker to perform DNA barcoding of green algal species than rbcL gene due to universality and rapid evolution rate. We conducted DNA barcoding application to Codium specimens from the Jeju Island, Korea to overcome the limit of morphological identification and to confirm the species diversity. As a result of applying tufA marker, we newly generated fifty-five tufA barcodes to resolve eight species. TufA marker exhibited 6.1%–21.8% interspecific divergences, wider than the gap of rbcL exon 1, 3.5%–11.5%. Molecular analysis of rbcL exon 1 sequences of Codium revealed eight distinct species like tufA analysis separated in five phylogenetic groups. DNA barcoding of the genus Codium using tufA marker is more helpful to overcome the limit of morphological identification, and this is more potential to reveal cryptic species and to resolve the relationships among subspecies than rbcL analysis alone. The complement of tufA barcoding and rbcL analyses including morphology for the genus Codium in the northwestern Pacific will give much more reliable achievement for discovering species diversity and resolving the phylogenetic relationships.
基金The National Natural Science Foundation of China under contract Nos 31970216 and 31670199the Science and Technology Plan Project of Guangdong Province under contract No.2012A020200007+1 种基金the Scientific Research Plan of Tianjin Municipal Education Committee under contract No.JW1705the Research Fund for Talented Scholars of Tianjin Normal University(2016)。
文摘It has been widely recognized that biological invasion has become one of the greatest threats to the ecosystem.Codium fragile is an invasive species which exhibits a variety of attributes like parthenogenesis,winter fragment,and vegetative reproduction;and therefore,it has become a successful invader,colonizing most subtropical regions.In China’s southeast coastal aquaculture waters,the green algal bloom caused by C.fragile will probably become a serious problem.In order to understand more details about the species,an experiment focused on its reproductive characteristics was conducted using culture established from a sample collected in the aquaculture raft of the Nan’ao Island in the South China Sea.The results showed that there were two types of gametes resembling aplanospores and zoospores respectively,both of which were able to germinate.During the gametes liberation,a long mucilage tube was formed out of the mouth of the gametangium assisting dispersal of gametes away from the parent plant.This tube was adapted not only to its surrounding flowing water environment but also to its parent plant’s outer gelatinous structure.In general,the optimum temperature for gametes release and germination was 15-20℃ and 15℃,respectively,which corresponded to the local offshore marine water.The plant was observed to produce vegetative buds under favourable reproductive conditions which were called propagules.They were capable of developing into filamentous thalli.The results will provide some scientific evidences for revealing the biological mechanism of bloom and control strategies of invasive green algae.
基金the Project for Supporting the National Development(2006BAD09A04)the Hi-Tech Research and Development (863) Program of China (2006AA05Z112 and 2006AA10A413)grants from the NationalNatural Science Foundation of China (U0633006).
文摘The cell organelles of the coenocytic alga Codium fragile (Sur.) Harlot aggregated rapidly and protoplasts were formed when its protoplasm was extruded out in seawater. Continuous observation showed that there were long and gelatinous threads connecting the cell organelles. The threads contracted, and thus the cell organelles aggregated into protoplasmic masses. The enzyme digestion experiments and Coomassie Brilliant Blue and Anthrone stainings showed that the long and gelatinous threads involved in the formation of the protoplasts might include protein and saccharides as structure components. Nile Red staining indicated that the protoplast primary envelope was non-lipid at first, and then lipid materials integrated into its surface gradually. The fluorescent brightener staining indicated that the cell wall did not regenerate in the newly formed protoplasts and they all disintegrated within 72 h after formation. Transmission electron microscopy of the cell wall of wild C. fragile showed electron-dense material embedded in the whole cell wall at regular intervals. The experiments indicated that C. fragile would be a suitable model alga for studying the formation of protoplasts.