This paper presents a biosensor utilizing a whispering gallery mode(WGM)resonator characterized by azimuthal symmetry and crescent-shaped coatings of silver.The study investigates the impact of the coupling gap on the...This paper presents a biosensor utilizing a whispering gallery mode(WGM)resonator characterized by azimuthal symmetry and crescent-shaped coatings of silver.The study investigates the impact of the coupling gap on the extinction ratio and Q-factor of the setup.The resonator is coated with silver in crescent shapes,ranging from 40 nm to 65 nm in thickness.Coupling is achieved with a silica waveguide,simulating the tapered fiber coupling method.Notably,the resonator exhibits a maximum sensitivity of 220 nm/RIU when coated with 55-nm-thick silver in conjunction with a 4-nm-thick layer of thiol-tethered deoxyribonucleic acid(DNA).This biosensor holds promise for biomolecule detection applications.展开更多
Iread with great interest the recent article by Shin,et al.[1]the authors present an important exploration into the use of drug-coated balloon(DCB)in patients aged≥75 years,a demographic increasingly encountered in m...Iread with great interest the recent article by Shin,et al.[1]the authors present an important exploration into the use of drug-coated balloon(DCB)in patients aged≥75 years,a demographic increasingly encountered in modern cardiovascular practice.The authors conducted a retrospective analysis involving 2050 elderly patients(aged≥75 years)undergoing successful percutaneous coronary intervention(PCI).展开更多
Background Quantitative flow ratio(QFR) holds significant value in guiding drug-coated balloon(DCB) treatment and enhancing outcomes. However, the predictive capability of post-angioplasty QFR for long-term clinical e...Background Quantitative flow ratio(QFR) holds significant value in guiding drug-coated balloon(DCB) treatment and enhancing outcomes. However, the predictive capability of post-angioplasty QFR for long-term clinical events in patients with de novo lesions who receive DCB treatment remains uncertain. The aim of this study was to explore the potential significance of post-angioplasty QFR measurements in predicting clinical outcomes in patients underwent DCB treatment for de novo lesions.Methods Patients who underwent DCB-only intervention for de novo lesions were enrolled. QFR was conducted after DCB treatment. The patients were then categorized based on post-angioplasty QFR. The primary endpoint was major adverse cardiac events(MACE), encompassing all-cause death, cardiovascular death, nonfatal myocardial infarction, stroke, and target vessel revascularization.Results A total of 553 patients with 561 lesions were included. The median follow-up period was 505 days, during which 66(11.8%) MACEs occurred. Based on post-procedural QFR grouping, there were 259 cases in the high QFR group(QFR > 0.93) and302 cases in the low QFR group(QFR ≤ 0.93). Kaplan-Meier analysis revealed a significantly higher cumulative incidence of MACE in the low QFR group(log-rank P = 0.004). The multivariate Cox proportional hazards model demonstrated a significant inverse correlation between QFR and the occurrence of MACEs(HR = 0.522, 95%CI: 0.289-0.942, P = 0.031). Landmark analysis indicated that high QFR had a significant reducing effect on the cumulative incidence of MACEs within 1 year(log-rank P = 0.016)and 1-5 years(log-rank P = 0.026).Conclusions In patients who underwent DCB-only treatment for de novo lesions, higher post-procedural QFR values(> 0.93)were identified as an independent protective factor against adverse prognosis.展开更多
Given the alarmingly increasing rates of glaucoma worldwide and the lack of satisfactory treatments,there is a dire need to explore more feasible treatment options.Magnesium(Mg)is an essential element in maintaining t...Given the alarmingly increasing rates of glaucoma worldwide and the lack of satisfactory treatments,there is a dire need to explore more feasible treatment options.Magnesium(Mg)is an essential element in maintaining the functional and structural integrity of vital ocular tissues,but Mg and its alloys are rarely mentioned in ophthalmic applications.Our previous research found that hydroxyapatite-coated Mg(Mg@HA)shows the best biocompatibility and bioactivity,and exhibits the effect of inhibiting fibrosis after filtration surgery in the rabbit model,which is expected to be a promising material for glaucoma drainage device.In this study,we further demonstrated the anti-fibrosis effect of Mg@HA from the molecular signal level and the efficacy of implantation in the rabbit filtration surgery model.In vitro experiments showed the surface modification of Mg affects the adhesion behavior and the reorganization of cytoskeleton of Human Western blot analysis and immunofluorescence found that Mg@HA regulates the adhesion and motility of human Tenon’s capsule fibroblasts mainly by down-regulating the phosphorylation of Smad2 and Smad3 in the canonical transforming growth factor-beta(TGF-β)signaling pathway.By observing and recording the condition of filtering blebs and intraocular pressure after surgery,the effectiveness of Mg@HA applied in the rabbit filtration surgery model was further evaluated.In conclusion,the application of hydroxyapatite-coated Mg in the eye has good biocompatibility and has the potential to resist postoperative glaucoma filtration fibrosis,which may be mediated by the regulation of the TGFβ/Smad signaling pathway.展开更多
Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes i...Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes it attractive as an anode of Li-ion batteries.Herein,through a one-pot facile high-temperature annealing route,using SBA15 as the silicon source,and embedding tin dioxide SnO_(2)particles into carbon coated SiO_(x),the mesoporous SiO_(x)-SnO_(2)@C rod composite was prepared and tested as the anode material.The results revealed that the SnO_(2)particles were distributed uniformly in the wall,which could further improve their volume energy densities.The coated carbon plays a role in maintaining structural integrality during lithiation,and the rich mesopores structure can release the expanded volume and enhance Li-ion transfer.At 0.1 A·g^(-1),the gravimetric and volumetric capacities of the composite were as high as 1271 mAh·g^(-1)and 1573 mAh·cm^(-3),respectively.After 200 cycles,the 95%capacity could be retained compared with that upon the 2nd cycle at 0.5 A·g^(-1).And the rod morphology was well kept,except that the diameter of the rod was 3 times larger than its original size after the cell was discharged into 0.01 V.展开更多
A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
This study aimed to investigate the release properties of slow release ure- a coated by industrial lignin and the influences of temperature, pH and post-ripening period on the release of nutrients in coated urea. Acco...This study aimed to investigate the release properties of slow release ure- a coated by industrial lignin and the influences of temperature, pH and post-ripening period on the release of nutrients in coated urea. According to the experimental results, the release of nutrients in coated fertilizers showed an S-shaped curve; on the 28th d, the nutrient release rate reached 73.77%; the differential solubility was 1.83%, and the theoretical release period was 50.25 d. The release of nutrients was significantly influenced by temperature. As the incubation temperature rose from 25 to 40 ℃, preliminary solubility increased from 8.03% to 16.24%; differential solubility increased from 1.83% to 1.88%; theoretical release period was reduced from 51.25 d to 45.55 d. The release of nutrients was promoted by H+ and OH-. After they were placed at room temperature within 30 d, coated fertilizers exhibited the optimal release properties.展开更多
Purpose–This research aims to investigate how the adhesion performance of GFRP composite components,commonly used in railway vehicles,is affected when bonded to cataphoresis coated steel substrate surfaces.Design/met...Purpose–This research aims to investigate how the adhesion performance of GFRP composite components,commonly used in railway vehicles,is affected when bonded to cataphoresis coated steel substrate surfaces.Design/methodology/approach–In this context,the aim was to determine the optimal adhesion parameters for bonding GFRP samples with natural and primed surfaces to steel samples with cataphoresis coatings.Then,single-lap joint samples with different bond thicknesses of 1 mm,2 mm and 3 mm were prepared.Finally,tensile tests were performed on the samples.Findings–The results showed that GFRP specimens with natural surfaces,characterised by the highest surface roughness,exhibited the lowest bond strength.But,the highest bonding performance was achieved in specimens where primed GFRP was bonded to cataphoresis coated steel,especially with a bond thickness of 1 mm,and achieving a yield strength of 20 MPa.This situation explains the characteristic difference between surface roughness and chemical coating,which are two essential pre-treatments in adhesive bonding.While surface roughness provides mechanical interlocking,excessive roughness can hinder the adhesive’s wetting ability,causing it to remain suspended on the surface as described in the Cassie–Baxter theorem.In contrast,it has been observed that,despite low surface roughness,chemical coatings enhance the bonding between primer paint and adhesive molecules,and–as stated in the Wenzel theorem–improve the surface wettability.Originality/value–As a preliminary preparation in the adhesive method,primer paint is applied to steel surfaces and GFRP material surfaces in classical industrial applications.In this research,the application of the catapheresis process to the steel substrate instead of primer paint and the bonding of primer-painted GFRP materials to this surface make a unique contribution to the research.展开更多
[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment...[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.展开更多
The possible application of magnesium(Mg)in glaucoma surgical treatment has been investigated in our previous work.In this paper,the degradation behavior and biocompatibility of Mg coated with hydroxyapatite(HA)and di...The possible application of magnesium(Mg)in glaucoma surgical treatment has been investigated in our previous work.In this paper,the degradation behavior and biocompatibility of Mg coated with hydroxyapatite(HA)and dicalcium phosphate dihydrate(DCPD)in eye environment were evaluated,and uncoated Mg was used for comparison.It was found that uniform corrosion occurred macroscopically to the coated Mg samples in sodium lactate ringer’s injection(SLRI)as well as in the rabbit eyes.In micro-scale,the corrosion was characterized by local cracking and pitting primarily.Mg and calcium(Ca)were incorporated into the surface corrosion products and a multi-layer structure was formed.Compared to other samples,HA-coated Mg slowed down dramatically the alkalinity of the solution and the ion release of the sample,and exhibited the lowest corrosion rate in SLRI,which was about 0.22 mm/a.In terms of biocompatibility,fibroblasts demonstrated high viability in the HA-coated and DCPD-coated Mg groups(p<0.05)in vitro.In vivo,HA-coated Mg was found to show lower inflammatory response and fibrosis than the other groups did,as indicated by hematoxylin-eosin and immunofluorescence staining.During the degrading process of HA-coated Mg in the rabbits’eyes,no inflammation was found in the anterior chamber,lens,and vitreous body.HA-coated Mg was fully biodegraded fifteen weeks post-operation,and the scleral drainage channel(SDC)was formed without obvious scarring.It is concluded that HA-coated Mg implantation is a promising adjunctive procedure to improve the success rate of trabeculectomy.Statement of significance:Magnesium(Mg)has shown to be a potential biomaterial for ophthalmic implants in our previous work.However,inflammatory response resulted from the low corrosion resistance of Mg is a major concern.It is shown here that Mg coated with different calcium phosphates can improve these properties in varying degrees and keep the scleral drainage channel unobstructed and unscarred.Based on our in vitro and in vivo studies,HA-coated Mg exhibited a better degradation behavior and excellent biocompatibility.The scleral drainage channel still exists and aqueous humor flows out smoothly after the full degradation of the implant.It is concluded that HA-coated Mg is a promising biomaterial to increase the therapeutic efficiency of trabeculectomy for glaucoma.展开更多
The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded micros...The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded microstructure on the HCF behavior remains unclear.In this work,a PtAl-coated third-generation SX superalloy with sheet specimen was thermal-exposed at 1100℃ with different durations and then subjected to HCF tests at 900℃.The influence of microstructural degradation on the HCF life and crack initiation were clarified by analyzing the development of microcracks and coating-substrate microstructure.Notably,the HCF life of the thermal-exposed coated alloy increased abnormally,which was attributed to the transformation of the fatigue crack initiation site from surface mi-crocracks to internal micropores compared to the as-deposited coated alloy.Although the nucleation and growth of surface microcracks occurred along the grain boundaries in the coating and the interdiffusion zone(IDZ)for both the as-deposited and the thermal-exposed coated alloys,remarkable differences of the microcrack growth into the substrate adjacent to the IDZ were observed,changing the crack initiation site.Specifically,the surface microcracks grew into the substrate through the cracking of the non-protective oxide layers in the as-deposited coated alloy.In comparison,the hinderance of the surface microcracks growth was found in the thermal-exposed coated al-loy,due to the formation of a protective Al_(2)O_(3) layer within the microcrack and theγ′rafting in the substrate close to the IDZ.This study will aid in improving the HCF life prediction model for the coated SX superalloys.展开更多
In the anticorrosive coating line of a welded tube plant, the current status and existing problems of the medium-frequency induction heating equipment were discussed.Partial renovations of the power control cabinet ha...In the anticorrosive coating line of a welded tube plant, the current status and existing problems of the medium-frequency induction heating equipment were discussed.Partial renovations of the power control cabinet have been conducted.Parameters such as the DC current, DC voltage, intermediate frequency power, heating temperature, and the positioning signal at the pipe end were collected.A data acquisition and processing system, which can process data according to user needs and provide convenient data processing functions, has been developed using LabVIEW software.This system has been successfully applied in the coating line for the automatic control of high-power induction heating equipment, production management, and digital steel tube and/or digital delivery.展开更多
Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by...Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by TBC spraying is an approved design.To protect both metal and TBC synchronously,a recommended geometry of crater is obtained through a fully automatic multi-objective optimization combined with conjugate heat transfer simulation in this work.The length and width of crater(i.e.,L/D and W/D)were applied as design variables,and the area-averaged overall effectiveness of the metal and TBC surfaces(i.e.,Φ_(av) and τ_(av))were selected as objective functions.The optimization procedure consists of automated geometry and mesh generation,conjugate heat transfer simulation validated by experimental data and Kriging surrogated model.The results showed that the Φ_(av) and τ_(av) are successfully increased respectively by 9.1%and 6.0%through optimization.Appropriate enlargement of the width and length of the crater can significantly improve the film coverage effect,since that the beneficial anti-CRVP is enhanced and the harmful CRVP is weakened.展开更多
Addressing the limitations of current commercial GBR membranes has driven a continued commitment to optimize materials,which integrate mechanical stability,biodegradability,antibacterial,and osteogenic functionality.Z...Addressing the limitations of current commercial GBR membranes has driven a continued commitment to optimize materials,which integrate mechanical stability,biodegradability,antibacterial,and osteogenic functionality.Zinc(Zn)is recently considered to be a promising candidate material for GBR membranes,while the in vivo osteogenic performance and antibacterial activity of pure Zn are inadequate.In this study,we developed MXene-coated Zn using an in situ self-reducing/assembling strategy to optimize the degradation,and endow antibacterial activity and osteogenesis with Zn substrates.MXene coatings exhibited excellent and stable photothermal response in the second near-infrared(NIR-II)region,enabling efficient scavenging of free radicals under NIR irradiation.The uniform and dense structure of the coating effectively blocked corrosive mediators,which significantly reduced the degradation rate of Zn substrates.This also moderated Zn ion(Zn^(2+))release,improving cytocompatibility and promoting the migration of HGF-1 cells,osteogenic differentiation of MC3T3-E1 cells,and the secretion of anti-inflammatory factors.Moreover,the synergistic antibacterial effect of the MXene coating,involving photothermal activity and Zn^(2+),demonstrated over 99%antibacterial efficacy against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus).Remarkably,in a rat subcutaneous infection model,the MXene-coated Zn eradicated nearly all bacteria at biosafe temperatures(<50℃).The coating also promoted in vivo expression of anti-inflammatory factor IL-10,creating a favorable immune microenvironment.The MXene-coated Zn membrane offers a promising strategy for simultaneously controlling Zn degradation,enhancing antibacterial activity,and promoting bone regeneration.Additionally,it shows great potential in regulating immune responses and facilitating soft tissue healing,paving the way for Zn-based materials to be applied as barrier membranes in future clinical applications.展开更多
SnO_(2)is regarded as a promising lithium storage material due to the advantage of sequential conversion-alloying reaction mechanism.Unfortunately,large volume expansion and undesirable reaction reversibility are iden...SnO_(2)is regarded as a promising lithium storage material due to the advantage of sequential conversion-alloying reaction mechanism.Unfortunately,large volume expansion and undesirable reaction reversibility are identified as two fatal drawbacks.Herein,SnO_(2)nanoparticles encapsulated in graphene oxide-coated porous biochar skeleton(SnO_(2)/PB@GO)are skillfully constructed via an efficient one-step hydrothermal process to be employed as composite anode materials,in which the PB skeleton extracted from waste tea-seed shells possesses enough space to buffer drastic volume variation and the GO coating acts as robust physical matrix to prevent structural degradation.Moreover,double-carbon components successfully anchor SnO_(2)nanoparticles to promote contact and reaction between Sn and Li_(2)O to guarantee high reaction reversibility and structural integration of SnO_(2)/PB@GO electrode.As expected,SnO_(2)/PB@GO-based cell achieves high reversible specific capacity of 783.5 mAh·g^(-1)after 100 cycles at0.1 A.g^(-1)and delivers desirable cycling stability with capacity retention ratio of 81.62%after 300 cycles at1.0 A.g^(-1).Therefore,this work may provide new perspectives on the modification of conversion or alloying typeanodes for lithium-ion batteries and present a feasible strategy to take full advantage of the waste biomass.展开更多
In this paper,polyamide(PA)woven fabric was used as the base fabric,and polyurethane(PU)solution containing silica nanoparticles(PU@SiO_(2)NPs)was used as the coating solution to prepare composite tent fabric(PA/PU@Si...In this paper,polyamide(PA)woven fabric was used as the base fabric,and polyurethane(PU)solution containing silica nanoparticles(PU@SiO_(2)NPs)was used as the coating solution to prepare composite tent fabric(PA/PU@SiO_(2)).The morphology,structure,and durability of the tent fabric under ultraviolet(UV)radiation,waterstained,or thermal conditions were investigated.The results show that compared with PA/PU fabric without SiO_(2)NPs,when the mass fraction of SiO_(2)NPs in PU coating is 5%,the air permeability of PA/PU@SiO_(2)fabric decreases from about 7.5 to 6.0 nm/s,while the reflectivity to UVvisible light is significantly improved.The surface wettability decreases,as indicated by the average water contact angle(WCA)on PA/PU@SiO_(2)remaining stable at 47°after 9 min.After thermal treatment,the PA/PU@SiO_(2)fabric shows superior mechanical stability.The degradation rate of the tensile strength is only 6.3%,approximately half that of the PA/PU fabric.Meanwhile,the elongation at break increases to 98.9%,compared to 61.8%for the PA/PU fabric.展开更多
Rechargeable aqueous Zn-ion batteries(ZIBs)have emerged as a promising new energy storage technology,characterized by their low cost,high safety,environmental friendliness,and the abundant availability of Zn resources...Rechargeable aqueous Zn-ion batteries(ZIBs)have emerged as a promising new energy storage technology,characterized by their low cost,high safety,environmental friendliness,and the abundant availability of Zn resources.However,several challenges remain with their use,such as zinc dendrite formation,corrosion,passivation,and hydrogen evolution reaction(HER)on the zinc anodesurface,leading to a short overall battery life.In this paper,a zinc anode-coating method with silica-fly ash composite(FAS)has been developed.This modified Zn anode(5FAS@Zn)demonstrates remarkable improvements in the performance and stability of ZIBs by effectively decreasing zinc nucleation overpotential and minimizing charge transfer resistance while facilitating stable Zn plating and stripping as well as achieving even zinc deposition.The remarkable cycling lifespan of the 5FAS@Znll5FAS@Zn symmetrical cell is 1800 h at 0.5 mA cm^(-2)and 1500 h at1 mA cm^(-2).The 5FAS@ZnllCu half-cell outperforms pure Zn batteries with a high and consistent Coulombic efficiency(CE)of 99.8%over 800 cycles at 1 mA cm^(-2).Furthermore,the full cell of 5FAS@ZnllV_(2)O_(5)exhibits notable improvements in cycling performance.This research provides a scalable and sustainable method to extend the life of zinc anodes and has significant implications for the large-scale deployment of zinc-ion batteries.展开更多
The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conv...The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conventional Pb-0.7%Ag alloy anode. Electrochemical measurements such as cyclic voltammetric, galvanostatic, potentiodynamic, open-circuit potential (OCP) and in situ electrochemical noise measurements were considered. After 2 h of OCP test, the linear polarization shows that the corrosion current density of the Ti/(IrO2-Ta2O5) mesh electrode is the lowest (3.37μA/cm^2) among the three OCAs and shows excellent performance. Additionally, after 24 h of galvanostatic polarization at 50 mA/cm^2and 38 ℃, the Ti/MnO2mesh anode has the highest potential (1.799 V), followed by the Ti/(IrO2-Ta2O5) plate (1.775 V) and Ti/(IrO2-Ta2O5) mesh (1.705 V) anodes. After 24 h of galvanostatic polarization followed by 16 h of decay, the linear polarization method confirms the sequence obtained after 2 h of OCP test, and the Ti/(IrO2-Ta2O5) mesh attains the lowest corrosion current density. The Ti/(IrO2-Ta2O5) mesh anode also shows better performance after 24 h of galvanostatic polarization with the overpotential lower than that of the conventional Pb-Ag anode by about 245 mV.展开更多
Nickel-rich layered oxide cathode materials such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)undergo deleterious side reactions when coupled with sulfide solid-state electrolytes(SSEs).To address this issue,we propose a...Nickel-rich layered oxide cathode materials such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)undergo deleterious side reactions when coupled with sulfide solid-state electrolytes(SSEs).To address this issue,we propose a dual-functional Ti_(3)(PO_(4))_(4)coating for NCM811 cathode to achieve a highly stable interface between NCM811 and sulfide SSEs.The electrochemically stabilized Ti_(3)(PO_(4))_(4)coating prevents direct contact between the SSEs and NCM811,thereby inhibiting interfacial side reactions.In addition,the internal structure of NCM811 can be stabilized by Ti doping,which inhibits the oxygen release behavior of NCM811 at high charge state,preventing further electrochemical oxidation of the SSEs.The modified NCM811@TiP cathode exhibits excellent long cycle stability,with 74.4%capacity retention after 100 cycles at a cut-off voltage of 4.2 V.This work provides a new insight for cathode modification based on nickel-rich layered oxides and sulfide-based all-solid-state lithium batteries.展开更多
基金supported by the Airlangga University through Mandate Research Grant(Nos.216/UN3.15/PT/2022 and 217/UN3.15/PT/2022)。
文摘This paper presents a biosensor utilizing a whispering gallery mode(WGM)resonator characterized by azimuthal symmetry and crescent-shaped coatings of silver.The study investigates the impact of the coupling gap on the extinction ratio and Q-factor of the setup.The resonator is coated with silver in crescent shapes,ranging from 40 nm to 65 nm in thickness.Coupling is achieved with a silica waveguide,simulating the tapered fiber coupling method.Notably,the resonator exhibits a maximum sensitivity of 220 nm/RIU when coated with 55-nm-thick silver in conjunction with a 4-nm-thick layer of thiol-tethered deoxyribonucleic acid(DNA).This biosensor holds promise for biomolecule detection applications.
文摘Iread with great interest the recent article by Shin,et al.[1]the authors present an important exploration into the use of drug-coated balloon(DCB)in patients aged≥75 years,a demographic increasingly encountered in modern cardiovascular practice.The authors conducted a retrospective analysis involving 2050 elderly patients(aged≥75 years)undergoing successful percutaneous coronary intervention(PCI).
基金supported by grants from the National Natural Science Foundation of China (82070408)the Traditional Chinese Medicine Science and Technology Project of Zhejiang Province (2023ZL496)。
文摘Background Quantitative flow ratio(QFR) holds significant value in guiding drug-coated balloon(DCB) treatment and enhancing outcomes. However, the predictive capability of post-angioplasty QFR for long-term clinical events in patients with de novo lesions who receive DCB treatment remains uncertain. The aim of this study was to explore the potential significance of post-angioplasty QFR measurements in predicting clinical outcomes in patients underwent DCB treatment for de novo lesions.Methods Patients who underwent DCB-only intervention for de novo lesions were enrolled. QFR was conducted after DCB treatment. The patients were then categorized based on post-angioplasty QFR. The primary endpoint was major adverse cardiac events(MACE), encompassing all-cause death, cardiovascular death, nonfatal myocardial infarction, stroke, and target vessel revascularization.Results A total of 553 patients with 561 lesions were included. The median follow-up period was 505 days, during which 66(11.8%) MACEs occurred. Based on post-procedural QFR grouping, there were 259 cases in the high QFR group(QFR > 0.93) and302 cases in the low QFR group(QFR ≤ 0.93). Kaplan-Meier analysis revealed a significantly higher cumulative incidence of MACE in the low QFR group(log-rank P = 0.004). The multivariate Cox proportional hazards model demonstrated a significant inverse correlation between QFR and the occurrence of MACEs(HR = 0.522, 95%CI: 0.289-0.942, P = 0.031). Landmark analysis indicated that high QFR had a significant reducing effect on the cumulative incidence of MACEs within 1 year(log-rank P = 0.016)and 1-5 years(log-rank P = 0.026).Conclusions In patients who underwent DCB-only treatment for de novo lesions, higher post-procedural QFR values(> 0.93)were identified as an independent protective factor against adverse prognosis.
基金supported by the National Natural Science Foundation of China(Grant No.81670860 and 81700836)Natural Science Foundation of Chongqing(Grant No.cstc2018jcyjAX0034 and cstc2018jcyjAX0016).
文摘Given the alarmingly increasing rates of glaucoma worldwide and the lack of satisfactory treatments,there is a dire need to explore more feasible treatment options.Magnesium(Mg)is an essential element in maintaining the functional and structural integrity of vital ocular tissues,but Mg and its alloys are rarely mentioned in ophthalmic applications.Our previous research found that hydroxyapatite-coated Mg(Mg@HA)shows the best biocompatibility and bioactivity,and exhibits the effect of inhibiting fibrosis after filtration surgery in the rabbit model,which is expected to be a promising material for glaucoma drainage device.In this study,we further demonstrated the anti-fibrosis effect of Mg@HA from the molecular signal level and the efficacy of implantation in the rabbit filtration surgery model.In vitro experiments showed the surface modification of Mg affects the adhesion behavior and the reorganization of cytoskeleton of Human Western blot analysis and immunofluorescence found that Mg@HA regulates the adhesion and motility of human Tenon’s capsule fibroblasts mainly by down-regulating the phosphorylation of Smad2 and Smad3 in the canonical transforming growth factor-beta(TGF-β)signaling pathway.By observing and recording the condition of filtering blebs and intraocular pressure after surgery,the effectiveness of Mg@HA applied in the rabbit filtration surgery model was further evaluated.In conclusion,the application of hydroxyapatite-coated Mg in the eye has good biocompatibility and has the potential to resist postoperative glaucoma filtration fibrosis,which may be mediated by the regulation of the TGFβ/Smad signaling pathway.
文摘Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes it attractive as an anode of Li-ion batteries.Herein,through a one-pot facile high-temperature annealing route,using SBA15 as the silicon source,and embedding tin dioxide SnO_(2)particles into carbon coated SiO_(x),the mesoporous SiO_(x)-SnO_(2)@C rod composite was prepared and tested as the anode material.The results revealed that the SnO_(2)particles were distributed uniformly in the wall,which could further improve their volume energy densities.The coated carbon plays a role in maintaining structural integrality during lithiation,and the rich mesopores structure can release the expanded volume and enhance Li-ion transfer.At 0.1 A·g^(-1),the gravimetric and volumetric capacities of the composite were as high as 1271 mAh·g^(-1)and 1573 mAh·cm^(-3),respectively.After 200 cycles,the 95%capacity could be retained compared with that upon the 2nd cycle at 0.5 A·g^(-1).And the rod morphology was well kept,except that the diameter of the rod was 3 times larger than its original size after the cell was discharged into 0.01 V.
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金Supported by Fund for Transformation of Scientific and Technological Achievements(2011GB24910009)Key Project of National Science&Technology Pillar Program(2011BAC11B01)Science and Technology Cooperation Program of Chinese Academy of Sciences and Hubei Province(YD20111215)~~
文摘This study aimed to investigate the release properties of slow release ure- a coated by industrial lignin and the influences of temperature, pH and post-ripening period on the release of nutrients in coated urea. According to the experimental results, the release of nutrients in coated fertilizers showed an S-shaped curve; on the 28th d, the nutrient release rate reached 73.77%; the differential solubility was 1.83%, and the theoretical release period was 50.25 d. The release of nutrients was significantly influenced by temperature. As the incubation temperature rose from 25 to 40 ℃, preliminary solubility increased from 8.03% to 16.24%; differential solubility increased from 1.83% to 1.88%; theoretical release period was reduced from 51.25 d to 45.55 d. The release of nutrients was promoted by H+ and OH-. After they were placed at room temperature within 30 d, coated fertilizers exhibited the optimal release properties.
文摘Purpose–This research aims to investigate how the adhesion performance of GFRP composite components,commonly used in railway vehicles,is affected when bonded to cataphoresis coated steel substrate surfaces.Design/methodology/approach–In this context,the aim was to determine the optimal adhesion parameters for bonding GFRP samples with natural and primed surfaces to steel samples with cataphoresis coatings.Then,single-lap joint samples with different bond thicknesses of 1 mm,2 mm and 3 mm were prepared.Finally,tensile tests were performed on the samples.Findings–The results showed that GFRP specimens with natural surfaces,characterised by the highest surface roughness,exhibited the lowest bond strength.But,the highest bonding performance was achieved in specimens where primed GFRP was bonded to cataphoresis coated steel,especially with a bond thickness of 1 mm,and achieving a yield strength of 20 MPa.This situation explains the characteristic difference between surface roughness and chemical coating,which are two essential pre-treatments in adhesive bonding.While surface roughness provides mechanical interlocking,excessive roughness can hinder the adhesive’s wetting ability,causing it to remain suspended on the surface as described in the Cassie–Baxter theorem.In contrast,it has been observed that,despite low surface roughness,chemical coatings enhance the bonding between primer paint and adhesive molecules,and–as stated in the Wenzel theorem–improve the surface wettability.Originality/value–As a preliminary preparation in the adhesive method,primer paint is applied to steel surfaces and GFRP material surfaces in classical industrial applications.In this research,the application of the catapheresis process to the steel substrate instead of primer paint and the bonding of primer-painted GFRP materials to this surface make a unique contribution to the research.
基金Supported by Major Science and Technology Program for Water Pollution Control and Treatment of China(2012ZX07102-003)~~
文摘[Objective] This study aimed to provide the basis for scientific and rea- sonable application of nitrogen fertilizer and control Of agricultural non-point source pollution in vegetable-growing area at Chaihe catchment of Dianchi Lake. [Method] A pot experiment was carried out to compare the loss of nitrogen via ammonia volatilization and nitrogen leaching after application of biochar coated urea (BCU) and common urea (Urea) with different nitrogen rates (0 mg N/kg soil, 400 mg N/kg soil, 320 mg N/kg soil and 280 mg N/kg soil). [Result] The results indicated that the amount of nitrogen loss was proportional to nitrogen applied rate. Leaching nitrogen was higher than ammonia volatilization. Compare with Urea treatments, ammonia volatilization and nitrogen leaching losses were significantly lower in BCU treatments at the same nitrogen application rate. At the nitrogen application rate of 320 and 280 mg N/kg soil, nitrogen loss, ammonia volatilization and leaching nitrogen was 43.5%-45.5%, 3.7%-21.7% and 49.8%-52.1% lower in BCU treatments than in Ure- a treatments, respectively. [Conclusion] The application of BCU could minimize nitro- gen loss by reducing nitrate leaching loss. It can be concluded that the low nitrogen application rate combined with BCU have a practical influence on controlling the risk of nitrogen pollution in Dianchi Lake.
基金supported by the Natural Science Foundation of Chongqing(Grant No.csts2018jcyjAX0016)Funded by the Senior Medical Talents Program of Chongqing for Young and Middle-aged.
文摘The possible application of magnesium(Mg)in glaucoma surgical treatment has been investigated in our previous work.In this paper,the degradation behavior and biocompatibility of Mg coated with hydroxyapatite(HA)and dicalcium phosphate dihydrate(DCPD)in eye environment were evaluated,and uncoated Mg was used for comparison.It was found that uniform corrosion occurred macroscopically to the coated Mg samples in sodium lactate ringer’s injection(SLRI)as well as in the rabbit eyes.In micro-scale,the corrosion was characterized by local cracking and pitting primarily.Mg and calcium(Ca)were incorporated into the surface corrosion products and a multi-layer structure was formed.Compared to other samples,HA-coated Mg slowed down dramatically the alkalinity of the solution and the ion release of the sample,and exhibited the lowest corrosion rate in SLRI,which was about 0.22 mm/a.In terms of biocompatibility,fibroblasts demonstrated high viability in the HA-coated and DCPD-coated Mg groups(p<0.05)in vitro.In vivo,HA-coated Mg was found to show lower inflammatory response and fibrosis than the other groups did,as indicated by hematoxylin-eosin and immunofluorescence staining.During the degrading process of HA-coated Mg in the rabbits’eyes,no inflammation was found in the anterior chamber,lens,and vitreous body.HA-coated Mg was fully biodegraded fifteen weeks post-operation,and the scleral drainage channel(SDC)was formed without obvious scarring.It is concluded that HA-coated Mg implantation is a promising adjunctive procedure to improve the success rate of trabeculectomy.Statement of significance:Magnesium(Mg)has shown to be a potential biomaterial for ophthalmic implants in our previous work.However,inflammatory response resulted from the low corrosion resistance of Mg is a major concern.It is shown here that Mg coated with different calcium phosphates can improve these properties in varying degrees and keep the scleral drainage channel unobstructed and unscarred.Based on our in vitro and in vivo studies,HA-coated Mg exhibited a better degradation behavior and excellent biocompatibility.The scleral drainage channel still exists and aqueous humor flows out smoothly after the full degradation of the implant.It is concluded that HA-coated Mg is a promising biomaterial to increase the therapeutic efficiency of trabeculectomy for glaucoma.
基金financially supported by National Key Research and Development Program of China(No.2022YFB 3708100)the Science Center for Gas Turbine Project,China(No.P2021-A-IV-002-001)+1 种基金the National Natural Science Foundation of China(Nos.52331005 and 52201100)the State Key Laboratory for Advanced Metals and Materials,China(No.2024-Z02).
文摘The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded microstructure on the HCF behavior remains unclear.In this work,a PtAl-coated third-generation SX superalloy with sheet specimen was thermal-exposed at 1100℃ with different durations and then subjected to HCF tests at 900℃.The influence of microstructural degradation on the HCF life and crack initiation were clarified by analyzing the development of microcracks and coating-substrate microstructure.Notably,the HCF life of the thermal-exposed coated alloy increased abnormally,which was attributed to the transformation of the fatigue crack initiation site from surface mi-crocracks to internal micropores compared to the as-deposited coated alloy.Although the nucleation and growth of surface microcracks occurred along the grain boundaries in the coating and the interdiffusion zone(IDZ)for both the as-deposited and the thermal-exposed coated alloys,remarkable differences of the microcrack growth into the substrate adjacent to the IDZ were observed,changing the crack initiation site.Specifically,the surface microcracks grew into the substrate through the cracking of the non-protective oxide layers in the as-deposited coated alloy.In comparison,the hinderance of the surface microcracks growth was found in the thermal-exposed coated al-loy,due to the formation of a protective Al_(2)O_(3) layer within the microcrack and theγ′rafting in the substrate close to the IDZ.This study will aid in improving the HCF life prediction model for the coated SX superalloys.
文摘In the anticorrosive coating line of a welded tube plant, the current status and existing problems of the medium-frequency induction heating equipment were discussed.Partial renovations of the power control cabinet have been conducted.Parameters such as the DC current, DC voltage, intermediate frequency power, heating temperature, and the positioning signal at the pipe end were collected.A data acquisition and processing system, which can process data according to user needs and provide convenient data processing functions, has been developed using LabVIEW software.This system has been successfully applied in the coating line for the automatic control of high-power induction heating equipment, production management, and digital steel tube and/or digital delivery.
基金Anhui Provincial Natural Science Foundation of China(2108085ME176)the Natural Science Foundation of China(52276043)。
文摘Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by TBC spraying is an approved design.To protect both metal and TBC synchronously,a recommended geometry of crater is obtained through a fully automatic multi-objective optimization combined with conjugate heat transfer simulation in this work.The length and width of crater(i.e.,L/D and W/D)were applied as design variables,and the area-averaged overall effectiveness of the metal and TBC surfaces(i.e.,Φ_(av) and τ_(av))were selected as objective functions.The optimization procedure consists of automated geometry and mesh generation,conjugate heat transfer simulation validated by experimental data and Kriging surrogated model.The results showed that the Φ_(av) and τ_(av) are successfully increased respectively by 9.1%and 6.0%through optimization.Appropriate enlargement of the width and length of the crater can significantly improve the film coverage effect,since that the beneficial anti-CRVP is enhanced and the harmful CRVP is weakened.
基金supported by the National Natural Science Foundation of China(Nos.52471257,52071008,12332019,and U20A20390).
文摘Addressing the limitations of current commercial GBR membranes has driven a continued commitment to optimize materials,which integrate mechanical stability,biodegradability,antibacterial,and osteogenic functionality.Zinc(Zn)is recently considered to be a promising candidate material for GBR membranes,while the in vivo osteogenic performance and antibacterial activity of pure Zn are inadequate.In this study,we developed MXene-coated Zn using an in situ self-reducing/assembling strategy to optimize the degradation,and endow antibacterial activity and osteogenesis with Zn substrates.MXene coatings exhibited excellent and stable photothermal response in the second near-infrared(NIR-II)region,enabling efficient scavenging of free radicals under NIR irradiation.The uniform and dense structure of the coating effectively blocked corrosive mediators,which significantly reduced the degradation rate of Zn substrates.This also moderated Zn ion(Zn^(2+))release,improving cytocompatibility and promoting the migration of HGF-1 cells,osteogenic differentiation of MC3T3-E1 cells,and the secretion of anti-inflammatory factors.Moreover,the synergistic antibacterial effect of the MXene coating,involving photothermal activity and Zn^(2+),demonstrated over 99%antibacterial efficacy against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus).Remarkably,in a rat subcutaneous infection model,the MXene-coated Zn eradicated nearly all bacteria at biosafe temperatures(<50℃).The coating also promoted in vivo expression of anti-inflammatory factor IL-10,creating a favorable immune microenvironment.The MXene-coated Zn membrane offers a promising strategy for simultaneously controlling Zn degradation,enhancing antibacterial activity,and promoting bone regeneration.Additionally,it shows great potential in regulating immune responses and facilitating soft tissue healing,paving the way for Zn-based materials to be applied as barrier membranes in future clinical applications.
基金financially supported by the National Natural Science Foundation of China(Nos.52274292 and 51874046)the Outstanding Youth Foundation of Hubei Province(No.2020CFA090)+1 种基金the Project of Scientific Research of Jingzhou(No.2023EC37)the Young Top-notch Talent Cultivation Program of Hubei Province
文摘SnO_(2)is regarded as a promising lithium storage material due to the advantage of sequential conversion-alloying reaction mechanism.Unfortunately,large volume expansion and undesirable reaction reversibility are identified as two fatal drawbacks.Herein,SnO_(2)nanoparticles encapsulated in graphene oxide-coated porous biochar skeleton(SnO_(2)/PB@GO)are skillfully constructed via an efficient one-step hydrothermal process to be employed as composite anode materials,in which the PB skeleton extracted from waste tea-seed shells possesses enough space to buffer drastic volume variation and the GO coating acts as robust physical matrix to prevent structural degradation.Moreover,double-carbon components successfully anchor SnO_(2)nanoparticles to promote contact and reaction between Sn and Li_(2)O to guarantee high reaction reversibility and structural integration of SnO_(2)/PB@GO electrode.As expected,SnO_(2)/PB@GO-based cell achieves high reversible specific capacity of 783.5 mAh·g^(-1)after 100 cycles at0.1 A.g^(-1)and delivers desirable cycling stability with capacity retention ratio of 81.62%after 300 cycles at1.0 A.g^(-1).Therefore,this work may provide new perspectives on the modification of conversion or alloying typeanodes for lithium-ion batteries and present a feasible strategy to take full advantage of the waste biomass.
文摘In this paper,polyamide(PA)woven fabric was used as the base fabric,and polyurethane(PU)solution containing silica nanoparticles(PU@SiO_(2)NPs)was used as the coating solution to prepare composite tent fabric(PA/PU@SiO_(2)).The morphology,structure,and durability of the tent fabric under ultraviolet(UV)radiation,waterstained,or thermal conditions were investigated.The results show that compared with PA/PU fabric without SiO_(2)NPs,when the mass fraction of SiO_(2)NPs in PU coating is 5%,the air permeability of PA/PU@SiO_(2)fabric decreases from about 7.5 to 6.0 nm/s,while the reflectivity to UVvisible light is significantly improved.The surface wettability decreases,as indicated by the average water contact angle(WCA)on PA/PU@SiO_(2)remaining stable at 47°after 9 min.After thermal treatment,the PA/PU@SiO_(2)fabric shows superior mechanical stability.The degradation rate of the tensile strength is only 6.3%,approximately half that of the PA/PU fabric.Meanwhile,the elongation at break increases to 98.9%,compared to 61.8%for the PA/PU fabric.
基金financially supported by the Thailand Science Research and Innovation Fund Chulalongkorn Universitythe National Research Council of Thailand(No.N11A670659)the National Natural Science Foundation of China(Nos.52125405 and U22A20108)
文摘Rechargeable aqueous Zn-ion batteries(ZIBs)have emerged as a promising new energy storage technology,characterized by their low cost,high safety,environmental friendliness,and the abundant availability of Zn resources.However,several challenges remain with their use,such as zinc dendrite formation,corrosion,passivation,and hydrogen evolution reaction(HER)on the zinc anodesurface,leading to a short overall battery life.In this paper,a zinc anode-coating method with silica-fly ash composite(FAS)has been developed.This modified Zn anode(5FAS@Zn)demonstrates remarkable improvements in the performance and stability of ZIBs by effectively decreasing zinc nucleation overpotential and minimizing charge transfer resistance while facilitating stable Zn plating and stripping as well as achieving even zinc deposition.The remarkable cycling lifespan of the 5FAS@Znll5FAS@Zn symmetrical cell is 1800 h at 0.5 mA cm^(-2)and 1500 h at1 mA cm^(-2).The 5FAS@ZnllCu half-cell outperforms pure Zn batteries with a high and consistent Coulombic efficiency(CE)of 99.8%over 800 cycles at 1 mA cm^(-2).Furthermore,the full cell of 5FAS@ZnllV_(2)O_(5)exhibits notable improvements in cycling performance.This research provides a scalable and sustainable method to extend the life of zinc anodes and has significant implications for the large-scale deployment of zinc-ion batteries.
基金Project(RDCPJ 428402)supported by the Natural Sciences and Engineering Research Council of Canada
文摘The catalytic performance of two oxides coated anodes (OCSs) meshes and one OCA plate was investigated in a zinc electrowinning electrolyte at 38 ℃. Their electrochemical behaviors were compared with that of a conventional Pb-0.7%Ag alloy anode. Electrochemical measurements such as cyclic voltammetric, galvanostatic, potentiodynamic, open-circuit potential (OCP) and in situ electrochemical noise measurements were considered. After 2 h of OCP test, the linear polarization shows that the corrosion current density of the Ti/(IrO2-Ta2O5) mesh electrode is the lowest (3.37μA/cm^2) among the three OCAs and shows excellent performance. Additionally, after 24 h of galvanostatic polarization at 50 mA/cm^2and 38 ℃, the Ti/MnO2mesh anode has the highest potential (1.799 V), followed by the Ti/(IrO2-Ta2O5) plate (1.775 V) and Ti/(IrO2-Ta2O5) mesh (1.705 V) anodes. After 24 h of galvanostatic polarization followed by 16 h of decay, the linear polarization method confirms the sequence obtained after 2 h of OCP test, and the Ti/(IrO2-Ta2O5) mesh attains the lowest corrosion current density. The Ti/(IrO2-Ta2O5) mesh anode also shows better performance after 24 h of galvanostatic polarization with the overpotential lower than that of the conventional Pb-Ag anode by about 245 mV.
基金supported by the National Natural Science Foundation of China(No.52272258),the Beijing Nova Program(No.20220484214)Key R&D and transformation projects in Qinghai Province(No.2023-HZ-801)the Fundamental Research Funds for the Central Universities(No.2023ZKPYJD07)。
文摘Nickel-rich layered oxide cathode materials such as LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)undergo deleterious side reactions when coupled with sulfide solid-state electrolytes(SSEs).To address this issue,we propose a dual-functional Ti_(3)(PO_(4))_(4)coating for NCM811 cathode to achieve a highly stable interface between NCM811 and sulfide SSEs.The electrochemically stabilized Ti_(3)(PO_(4))_(4)coating prevents direct contact between the SSEs and NCM811,thereby inhibiting interfacial side reactions.In addition,the internal structure of NCM811 can be stabilized by Ti doping,which inhibits the oxygen release behavior of NCM811 at high charge state,preventing further electrochemical oxidation of the SSEs.The modified NCM811@TiP cathode exhibits excellent long cycle stability,with 74.4%capacity retention after 100 cycles at a cut-off voltage of 4.2 V.This work provides a new insight for cathode modification based on nickel-rich layered oxides and sulfide-based all-solid-state lithium batteries.