In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid ...In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS is based on neuro-fuzzy model, trained with data collected from various sources of literature. ETC is predicted using ANFIS with volume fraction and thermal conductivities of fillers and matrixes as input parameters, respectively. The predicted results by ANFIS are in good agreements with experimental values. The predicted results also show the supremacy of ANFIS in comparison with other earlier developed models.展开更多
This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comp...This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations.展开更多
This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several e...This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several experiments were carried out using a motion capture system(VICON) and inertial sensors to identify the human posture during the sit-to-stand motion.The EJAD uses only two inertial measurement units(IMUs) fused through an adaptive neuro-fuzzy inference systems(ANFIS) algorithm to imitate the real motion of the caregiver.The EJAD consists of two main parts,a robot arm and an active walker.The robot arm is a 2-degree-of-freedom(2-DOF) planar manipulator.In addition,a back support with a passive joint is used to support the patient s back.The IMUs on the leg and trunk of the patient are used to compensate for and adapt to the EJAD system motion depending on the obtained patient posture.The ANFIS algorithm is used to train the fuzzy system that converts the IMUs signals to the right posture of the patient.A control scheme is proposed to control the system motion based on practical measurements taken from the experiments.A computer simulation showed a relatively good performance of the EJAD in assisting the patient.展开更多
Renewable energy has garnered attention due to the need for sustainable energy sources.Wind power has emerged as an alternative that has contributed to the transition towards cleaner energy.As the importance of wind e...Renewable energy has garnered attention due to the need for sustainable energy sources.Wind power has emerged as an alternative that has contributed to the transition towards cleaner energy.As the importance of wind energy grows,it can be crucial to provide forecasts that optimize its performance potential.Artificial intelligence(AI)methods have risen in prominence due to how well they can handle complicated systems while enhancing the accuracy of prediction.This study explored the area of AI to predict wind-energy production at a wind farm in Yalova,Turkey,using four different AI approaches:support vector machines(SVMs),decision trees,adaptive neuro-fuzzy inference systems(ANFIS)and artificial neural networks(ANNs).Wind speed and direction were considered as essential input parameters,with wind energy as the target parameter,and models are thoroughly evaluated using metrics such as the mean absolute percentage error(MAPE),coefficient of determination(R~2),and mean absolute error(MAE).The findings accentuate the superior performance of the SVM,which delivered the lowest MAPE(2.42%),the highest R~2(0.95),and the lowest MAE(71.21%)compared with actual values,while ANFIS was less effective in this context.The main aim of this comparative analysis was to rank the models to move to the next step in improving the least efficient methods by combining them with optimization algorithms,such as metaheuristic algorithms.展开更多
Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic genera...Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control(AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems(FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator(TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC(HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization(MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC.展开更多
In this study, ANFIS, as decision support system, is applied to detect the faults of MF 285 mechanism tractor clutch. Maintenance mechanisms include normal mode, rolling element failure, seal failure and attrition-bas...In this study, ANFIS, as decision support system, is applied to detect the faults of MF 285 mechanism tractor clutch. Maintenance mechanisms include normal mode, rolling element failure, seal failure and attrition-based. Experiments were carried out in three speeds: 1000, 15,000, 2000 RPM and two conditions. The sensor was mounted vertically and horizontally. Vibrating spectrum of the time domain and the frequency of vibration data were obtained. Thirty-three statistical parameters of vibration signals in frequency domain and time were chosen as the sources attribute to detect errors. Finally, the top three features as input vectors to the ANFIS were evaluated. Using statistical parameters the performance of the system was calculated with the experimental data and training of ANFIS model. The system could not provide a seal to identify the fault. Regardless of the vibration data obtained from the classification of the seal, the overall classification accuracy of the ANFIS was 99.14% in the amount of 100% of the sensor installed vertically and horizontally. The results showed that this system can be used as an intelligent diagnosis system.展开更多
In this investigation, an approach using Coac-tive Neuro-Fuzzy Inference System (CANFIS) as diagnosis system for breast cancer has been proposed on Wisconsin Breast Cancer Data (WBCD). It is occasionally difficult to ...In this investigation, an approach using Coac-tive Neuro-Fuzzy Inference System (CANFIS) as diagnosis system for breast cancer has been proposed on Wisconsin Breast Cancer Data (WBCD). It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-linearity of the rela-tionships between the large measured factors, which can be possibly resolved with a human like decision-making process using Artificial Intelligence (AI) algorithms. CANFIS is an AI algorithm which has the advantages of both fuzzy inference system and neural networks and can deal with ambiguous data and learn from the past data by itself. The Multi Layer Percep-tron Neural Network (MLPNN), Probabilistic Neural Network (PNN) Principal Component Analysis (PCA), Support Vector Machine (SVM) and Self Organizing Map (SOM) were also tested and benchmarked for their展开更多
The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of ...The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure.The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios(R?1).Artificial neural networks(ANN),adaptive neuro-fuzzy inference systems(ANFIS),support-vector machines(SVM),a random forest model(RF),and an extreme-gradient tree-boosting model(XGB)are trained using numerical and experimental input data obtained from fatigue tests based on a relatively low number of stress measurements.In particular,the coefficients of the traditional force law formula are found using relevant numerical methods.It is shown that,in comparison to traditional approaches,the neural network and neuro-fuzzy models produce better results,with the neural network models trained using the boosting iterations technique providing the best performances.Building strong models from weak models,XGB helps to predict fatigue life by reducing model partiality and variation in supervised learning.Fuzzy neural models can be used to predict the fatigue life of alloys more accurately than neural networks and traditional methods.展开更多
The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established...The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.展开更多
Energy production from renewable sources offers an efficient alternative non-polluting and sustainable solution. Among renewable energies, solar energy represents the most important source, the most efficient and the ...Energy production from renewable sources offers an efficient alternative non-polluting and sustainable solution. Among renewable energies, solar energy represents the most important source, the most efficient and the least expensive compared to other renewable sources. Electric power generation systems from the sun’s energy typically characterized by their low efficiency. However, it is known that photovoltaic pumping systems are the most economical solution especially in rural areas. This work deals with the modeling and the vector control of a solar photovoltaic (PV) pumping system. The main objective of this study is to improve optimization techniques that maximize the overall efficiency of the pumping system. In order to optimize their energy efficiency whatever, the weather conditions, we inserted between the inverter and the photovoltaic generator (GPV) a maximum power point adapter known as Maximum Power Point Tracking (MPPT). Among the various MPPT techniques presented in the literature, we adopted the adaptive neuro-fuzzy controller (ANFIS). In addition, the performance of the sliding vector control associated with the neural network was developed and evaluated. Finally, simulation work under Matlab / Simulink was achieved to examine the performance of a photovoltaic conversion chain intended for pumping and to verify the effectiveness of the speed control under various instructions applied to the system. According to the study, we have done on the improvement of sliding mode control with neural network. Note that the sliding-neuron control provides better results compared to other techniques in terms of improved chattering phenomenon and less deviation from its reference.展开更多
文摘In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS is based on neuro-fuzzy model, trained with data collected from various sources of literature. ETC is predicted using ANFIS with volume fraction and thermal conductivities of fillers and matrixes as input parameters, respectively. The predicted results by ANFIS are in good agreements with experimental values. The predicted results also show the supremacy of ANFIS in comparison with other earlier developed models.
基金The Deanship of Scientific Research at Najran University has supported this work,under the General Research Funding program grant code(NU/-/SERC/10/650).
文摘This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations.
基金supported in part by a scholarship provided by the Mission DepartmentMinistry of Higher Education of the Government of Egypt
文摘This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several experiments were carried out using a motion capture system(VICON) and inertial sensors to identify the human posture during the sit-to-stand motion.The EJAD uses only two inertial measurement units(IMUs) fused through an adaptive neuro-fuzzy inference systems(ANFIS) algorithm to imitate the real motion of the caregiver.The EJAD consists of two main parts,a robot arm and an active walker.The robot arm is a 2-degree-of-freedom(2-DOF) planar manipulator.In addition,a back support with a passive joint is used to support the patient s back.The IMUs on the leg and trunk of the patient are used to compensate for and adapt to the EJAD system motion depending on the obtained patient posture.The ANFIS algorithm is used to train the fuzzy system that converts the IMUs signals to the right posture of the patient.A control scheme is proposed to control the system motion based on practical measurements taken from the experiments.A computer simulation showed a relatively good performance of the EJAD in assisting the patient.
文摘Renewable energy has garnered attention due to the need for sustainable energy sources.Wind power has emerged as an alternative that has contributed to the transition towards cleaner energy.As the importance of wind energy grows,it can be crucial to provide forecasts that optimize its performance potential.Artificial intelligence(AI)methods have risen in prominence due to how well they can handle complicated systems while enhancing the accuracy of prediction.This study explored the area of AI to predict wind-energy production at a wind farm in Yalova,Turkey,using four different AI approaches:support vector machines(SVMs),decision trees,adaptive neuro-fuzzy inference systems(ANFIS)and artificial neural networks(ANNs).Wind speed and direction were considered as essential input parameters,with wind energy as the target parameter,and models are thoroughly evaluated using metrics such as the mean absolute percentage error(MAPE),coefficient of determination(R~2),and mean absolute error(MAE).The findings accentuate the superior performance of the SVM,which delivered the lowest MAPE(2.42%),the highest R~2(0.95),and the lowest MAE(71.21%)compared with actual values,while ANFIS was less effective in this context.The main aim of this comparative analysis was to rank the models to move to the next step in improving the least efficient methods by combining them with optimization algorithms,such as metaheuristic algorithms.
文摘Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control(AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems(FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator(TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC(HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization(MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC.
文摘In this study, ANFIS, as decision support system, is applied to detect the faults of MF 285 mechanism tractor clutch. Maintenance mechanisms include normal mode, rolling element failure, seal failure and attrition-based. Experiments were carried out in three speeds: 1000, 15,000, 2000 RPM and two conditions. The sensor was mounted vertically and horizontally. Vibrating spectrum of the time domain and the frequency of vibration data were obtained. Thirty-three statistical parameters of vibration signals in frequency domain and time were chosen as the sources attribute to detect errors. Finally, the top three features as input vectors to the ANFIS were evaluated. Using statistical parameters the performance of the system was calculated with the experimental data and training of ANFIS model. The system could not provide a seal to identify the fault. Regardless of the vibration data obtained from the classification of the seal, the overall classification accuracy of the ANFIS was 99.14% in the amount of 100% of the sensor installed vertically and horizontally. The results showed that this system can be used as an intelligent diagnosis system.
文摘In this investigation, an approach using Coac-tive Neuro-Fuzzy Inference System (CANFIS) as diagnosis system for breast cancer has been proposed on Wisconsin Breast Cancer Data (WBCD). It is occasionally difficult to attain the ultimate diagnosis even for medical experts due to the complexity and non-linearity of the rela-tionships between the large measured factors, which can be possibly resolved with a human like decision-making process using Artificial Intelligence (AI) algorithms. CANFIS is an AI algorithm which has the advantages of both fuzzy inference system and neural networks and can deal with ambiguous data and learn from the past data by itself. The Multi Layer Percep-tron Neural Network (MLPNN), Probabilistic Neural Network (PNN) Principal Component Analysis (PCA), Support Vector Machine (SVM) and Self Organizing Map (SOM) were also tested and benchmarked for their
文摘The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure.The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios(R?1).Artificial neural networks(ANN),adaptive neuro-fuzzy inference systems(ANFIS),support-vector machines(SVM),a random forest model(RF),and an extreme-gradient tree-boosting model(XGB)are trained using numerical and experimental input data obtained from fatigue tests based on a relatively low number of stress measurements.In particular,the coefficients of the traditional force law formula are found using relevant numerical methods.It is shown that,in comparison to traditional approaches,the neural network and neuro-fuzzy models produce better results,with the neural network models trained using the boosting iterations technique providing the best performances.Building strong models from weak models,XGB helps to predict fatigue life by reducing model partiality and variation in supervised learning.Fuzzy neural models can be used to predict the fatigue life of alloys more accurately than neural networks and traditional methods.
基金supported by the National Natural Science Foundation of China(grant No.52375247)Natural Science Foundation of Jiangsu Province(grant No.BK20201421)+3 种基金Graduate Research and Innovation Projects of Jiangsu Province(grant No.KYCX21-3380)Jiangsu Agricultural Science and Technology Independent Innovation Fund(grant No.CX(22)3090)Taizhou Science and Technology Project(grant No.TN202101)a Project Funded by the Priority Academic Program Development of Jiangsu Higher。
文摘The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.
文摘Energy production from renewable sources offers an efficient alternative non-polluting and sustainable solution. Among renewable energies, solar energy represents the most important source, the most efficient and the least expensive compared to other renewable sources. Electric power generation systems from the sun’s energy typically characterized by their low efficiency. However, it is known that photovoltaic pumping systems are the most economical solution especially in rural areas. This work deals with the modeling and the vector control of a solar photovoltaic (PV) pumping system. The main objective of this study is to improve optimization techniques that maximize the overall efficiency of the pumping system. In order to optimize their energy efficiency whatever, the weather conditions, we inserted between the inverter and the photovoltaic generator (GPV) a maximum power point adapter known as Maximum Power Point Tracking (MPPT). Among the various MPPT techniques presented in the literature, we adopted the adaptive neuro-fuzzy controller (ANFIS). In addition, the performance of the sliding vector control associated with the neural network was developed and evaluated. Finally, simulation work under Matlab / Simulink was achieved to examine the performance of a photovoltaic conversion chain intended for pumping and to verify the effectiveness of the speed control under various instructions applied to the system. According to the study, we have done on the improvement of sliding mode control with neural network. Note that the sliding-neuron control provides better results compared to other techniques in terms of improved chattering phenomenon and less deviation from its reference.