The Co3 Ti phase hardens appreciably by the fine precipitation of disordered fcc Co-rich phase upon aging after quenching from solution annealing temperature. Transmission electron microscope (TEM)observations reveale...The Co3 Ti phase hardens appreciably by the fine precipitation of disordered fcc Co-rich phase upon aging after quenching from solution annealing temperature. Transmission electron microscope (TEM)observations revealed that the precipitates are platelet in shape, lying nearly parallel to the {100} planes of the L12-ordered matrix, and perfectly coherent with the matrix lattice at the beginning of aging. The high temperature strength increases appreciably with the fine precipitation of disondered Co-rich phase over the whole temperature range investigated. TEM observations of the deformed alloys after underaging revealed that saperdislocations are pinned by precipitates indicating an attractive interaction between dislocations and precipitates.展开更多
The surface reaction of Co 3Ti alloys (with and without Fe) with water vapor was investigated by using Auger electron spectroscopy (AES). The results showed that the rate of the surface reaction is much lower in Co 21...The surface reaction of Co 3Ti alloys (with and without Fe) with water vapor was investigated by using Auger electron spectroscopy (AES). The results showed that the rate of the surface reaction is much lower in Co 21 5Ti 3Fe alloy as compared with Co 3Ti (Co 23Ti) alloy. The surface reaction of Co 21 5Ti 3Fe alloy with water vapor saturates at exposure of 2×10 -3 Pa·s, but it does not saturate even at 0 1 Pa·s exposure for Co 3Ti alloy without Fe. The results also indicated that the kinetic of the surface reaction of Co 21 5Ti 3Fe with water vapor is much smaller than that of Co 3Ti at the same exposure. All the above results illustrate that the suppression of environmental embrittlement by addition of Fe to Co 3Ti alloy is attributed to its reduction of the surface reaction kinetics with water vapor.展开更多
文摘The Co3 Ti phase hardens appreciably by the fine precipitation of disordered fcc Co-rich phase upon aging after quenching from solution annealing temperature. Transmission electron microscope (TEM)observations revealed that the precipitates are platelet in shape, lying nearly parallel to the {100} planes of the L12-ordered matrix, and perfectly coherent with the matrix lattice at the beginning of aging. The high temperature strength increases appreciably with the fine precipitation of disondered Co-rich phase over the whole temperature range investigated. TEM observations of the deformed alloys after underaging revealed that saperdislocations are pinned by precipitates indicating an attractive interaction between dislocations and precipitates.
文摘The surface reaction of Co 3Ti alloys (with and without Fe) with water vapor was investigated by using Auger electron spectroscopy (AES). The results showed that the rate of the surface reaction is much lower in Co 21 5Ti 3Fe alloy as compared with Co 3Ti (Co 23Ti) alloy. The surface reaction of Co 21 5Ti 3Fe alloy with water vapor saturates at exposure of 2×10 -3 Pa·s, but it does not saturate even at 0 1 Pa·s exposure for Co 3Ti alloy without Fe. The results also indicated that the kinetic of the surface reaction of Co 21 5Ti 3Fe with water vapor is much smaller than that of Co 3Ti at the same exposure. All the above results illustrate that the suppression of environmental embrittlement by addition of Fe to Co 3Ti alloy is attributed to its reduction of the surface reaction kinetics with water vapor.