Highly developed electronic information technology has undoubtedly resulted in numerous benefits to the military and public life.However,the resulting electromagnetic wave(EW)pollution cannot be ignored.Therefore,the ...Highly developed electronic information technology has undoubtedly resulted in numerous benefits to the military and public life.However,the resulting electromagnetic wave(EW)pollution cannot be ignored.Therefore,the application of highly efficient EW materials is becoming an important requirement.In this study,magnetic-dielectric heterointerface strategy was applied to construct absorbers with desirable electromagnetic wave properties.A novel CoO/Co nanoparticle anchored to N-doped mesoporous carbon(CoO/Co/N-CMK-3)composites was fabricated by facile precipitation reaction and the electromagnetic characteristics have been well optimized by adjusting pyrolysis temperature.The CoO/Co/N-CMK-3 yielded its highest performance at an annealing temperature of 800℃,with an extended effective absorption bandwidth of 5.83 GHz and unusually low minimum reflection loss of−63.82 dB,even at a thickness of just 1.8 mm and low filler loading(10%).For the excellent microwave absorption property,the advantages of the CoO/Co/N-CMK-3 can be summed up as follows.Firstly,the incorporation of heterointerfaces among N-CMK-3,CoO,and Co introduces abundant polarization centers,triggering various polarization effects and increasing dielectric losses.Secondly,the CoO/Co magnetic component introduced the strong magnetic loss and improved the impedance matching capability of CoO/Co/N-CMK-3.Thirdly,the extraordinary magnetic-dielectric behavior is supported by multiple magnetic coupling networks and enriched air-material heterointerfaces,boosted the magnetoelectric cooperative loss for further optimizing the electromagnetic dissipation and broadening the effective absorption frequency band.Moreover,the CST simulation results validate the impressive operational bandwidth and reflection loss characteristics of the obtained absorbers.This study demonstrates a novel heterointerface engineering strategy for designing lightweight,wide-band,and high-performance EW absorbers.展开更多
The electrochemical performance of CoO-filled multi-walled carbon nanotubes(MWCNTs) is described. MWCNTs were purified, opened and filled with cobalt salt in one-step by wet-chemistry route. Followed by calcinations i...The electrochemical performance of CoO-filled multi-walled carbon nanotubes(MWCNTs) is described. MWCNTs were purified, opened and filled with cobalt salt in one-step by wet-chemistry route. Followed by calcinations in Ar atmosphere, the salt filled in the MWCNTs decomposed to CoO subsequently. Structural characterization of the composite material by X-ray diffraction and transmission electron microscopy showed that MWCNTs were filled by discrete nano-size CoO. Compared to the MWCNTs purified by HNO3, the CoO-filled MWCNTs exhibited higher capacity and better cyclability during galvanastatic charge-discharge cycling and cyclic voltammetry (CV) tests.展开更多
基金financially supported by National Key Research and Development Program of China(Nos.2022YFB3807100 and 2022YFB3807101)National Science Fund for Distinguished Young Scholars(No.52025034)+3 种基金National Natural Science Foundation of China(No.22205182)Guangdong Basic and Applied Basic Re-search Foundation(No.2024A1515011516)China Postdoctoral Science Foundation(Nos.2022M722594 and 2024T171710)financially supported by Innovation Team of Shaanxi Sanqin Scholars.
文摘Highly developed electronic information technology has undoubtedly resulted in numerous benefits to the military and public life.However,the resulting electromagnetic wave(EW)pollution cannot be ignored.Therefore,the application of highly efficient EW materials is becoming an important requirement.In this study,magnetic-dielectric heterointerface strategy was applied to construct absorbers with desirable electromagnetic wave properties.A novel CoO/Co nanoparticle anchored to N-doped mesoporous carbon(CoO/Co/N-CMK-3)composites was fabricated by facile precipitation reaction and the electromagnetic characteristics have been well optimized by adjusting pyrolysis temperature.The CoO/Co/N-CMK-3 yielded its highest performance at an annealing temperature of 800℃,with an extended effective absorption bandwidth of 5.83 GHz and unusually low minimum reflection loss of−63.82 dB,even at a thickness of just 1.8 mm and low filler loading(10%).For the excellent microwave absorption property,the advantages of the CoO/Co/N-CMK-3 can be summed up as follows.Firstly,the incorporation of heterointerfaces among N-CMK-3,CoO,and Co introduces abundant polarization centers,triggering various polarization effects and increasing dielectric losses.Secondly,the CoO/Co magnetic component introduced the strong magnetic loss and improved the impedance matching capability of CoO/Co/N-CMK-3.Thirdly,the extraordinary magnetic-dielectric behavior is supported by multiple magnetic coupling networks and enriched air-material heterointerfaces,boosted the magnetoelectric cooperative loss for further optimizing the electromagnetic dissipation and broadening the effective absorption frequency band.Moreover,the CST simulation results validate the impressive operational bandwidth and reflection loss characteristics of the obtained absorbers.This study demonstrates a novel heterointerface engineering strategy for designing lightweight,wide-band,and high-performance EW absorbers.
文摘The electrochemical performance of CoO-filled multi-walled carbon nanotubes(MWCNTs) is described. MWCNTs were purified, opened and filled with cobalt salt in one-step by wet-chemistry route. Followed by calcinations in Ar atmosphere, the salt filled in the MWCNTs decomposed to CoO subsequently. Structural characterization of the composite material by X-ray diffraction and transmission electron microscopy showed that MWCNTs were filled by discrete nano-size CoO. Compared to the MWCNTs purified by HNO3, the CoO-filled MWCNTs exhibited higher capacity and better cyclability during galvanastatic charge-discharge cycling and cyclic voltammetry (CV) tests.