采用循环伏安法、微分脉冲伏安法、交流阻抗谱以及计时电流法等电化学方法,结合红外光谱、紫外-可见分光光度法、原子力显微镜、透射电子显微镜以及原子吸收光谱等辅助手段,表征了固定漆酶的聚苯胺-草酸钴纳米复合物的化学组成、结构和...采用循环伏安法、微分脉冲伏安法、交流阻抗谱以及计时电流法等电化学方法,结合红外光谱、紫外-可见分光光度法、原子力显微镜、透射电子显微镜以及原子吸收光谱等辅助手段,表征了固定漆酶的聚苯胺-草酸钴纳米复合物的化学组成、结构和形貌,测试了纳米复合物固酶前后的导电性能的变化,研究了纳米复合物修饰电极上固定漆酶的直接电化学行为,评估了该电极的催化氧还原效能以及作为电化学传感器检测氧分子的性能。实验结果表明该电极在不含电子介体的溶液中以酶活性中心T2作为首要电子受体,将得到电子传递给化学吸附的氧气使其被电还原,其表观电子迁移速率为0.017 s^(-1),且具有良好的催化氧还原性能(氧还原起始电位:460 m V vs NHE,转化氧分子为水的表观速率常数为2.6×10-4 s^(-1)),酶电催化氧还原为水分子步骤为反应的速控步。该电极作为电化学传感器对氧具有极低检测限(0.20μmol·L^(-1)),宽线性响应范围(0.4~7.5μmol·L^(-1))以及对底物高亲和力(KM=122.4μmol·L^(-1))等优势。展开更多
The thermal decomposition processes in solid state CoC2O4·2H2O have been studied in air using TG/DTA, DSC and XRD techniques. TG/DTA, DSC curves showed that the decomposition proceeded through two well-defined st...The thermal decomposition processes in solid state CoC2O4·2H2O have been studied in air using TG/DTA, DSC and XRD techniques. TG/DTA, DSC curves showed that the decomposition proceeded through two well-defined steps in air. Mass loss of the thermal decomposition of CoC2O4·2H2O was in good agreement with the theoretica1 one. XRD showed that the final product of the thermal decomposition was Co3O4. The activation energies were calculated through the ASTM E698 and Flynn-Wall-Ozawa (FWO) methods, and the possible conversion functions had been estimated through the multiple-linear regression method. The activation energies for the two steps decomposition of CoC2O4·2H2O were 140.18 kJ·mol-1 and 134.61 kJ·mol-1, respective1y.展开更多
文摘采用循环伏安法、微分脉冲伏安法、交流阻抗谱以及计时电流法等电化学方法,结合红外光谱、紫外-可见分光光度法、原子力显微镜、透射电子显微镜以及原子吸收光谱等辅助手段,表征了固定漆酶的聚苯胺-草酸钴纳米复合物的化学组成、结构和形貌,测试了纳米复合物固酶前后的导电性能的变化,研究了纳米复合物修饰电极上固定漆酶的直接电化学行为,评估了该电极的催化氧还原效能以及作为电化学传感器检测氧分子的性能。实验结果表明该电极在不含电子介体的溶液中以酶活性中心T2作为首要电子受体,将得到电子传递给化学吸附的氧气使其被电还原,其表观电子迁移速率为0.017 s^(-1),且具有良好的催化氧还原性能(氧还原起始电位:460 m V vs NHE,转化氧分子为水的表观速率常数为2.6×10-4 s^(-1)),酶电催化氧还原为水分子步骤为反应的速控步。该电极作为电化学传感器对氧具有极低检测限(0.20μmol·L^(-1)),宽线性响应范围(0.4~7.5μmol·L^(-1))以及对底物高亲和力(KM=122.4μmol·L^(-1))等优势。
文摘The thermal decomposition processes in solid state CoC2O4·2H2O have been studied in air using TG/DTA, DSC and XRD techniques. TG/DTA, DSC curves showed that the decomposition proceeded through two well-defined steps in air. Mass loss of the thermal decomposition of CoC2O4·2H2O was in good agreement with the theoretica1 one. XRD showed that the final product of the thermal decomposition was Co3O4. The activation energies were calculated through the ASTM E698 and Flynn-Wall-Ozawa (FWO) methods, and the possible conversion functions had been estimated through the multiple-linear regression method. The activation energies for the two steps decomposition of CoC2O4·2H2O were 140.18 kJ·mol-1 and 134.61 kJ·mol-1, respective1y.