Abstract: In order to improve the reactivity of Na2CO3/Al2O3 sorbent with CO2, a new sorbent showing high reactivity was developed by doping Na2CO3/Al2O3 with TiO2 using impregnation. Fourteen multi-cycle carbonation...Abstract: In order to improve the reactivity of Na2CO3/Al2O3 sorbent with CO2, a new sorbent showing high reactivity was developed by doping Na2CO3/Al2O3 with TiO2 using impregnation. Fourteen multi-cycle carbonation/regeneration tests of the sorbent were carried out in a fluidized-bed reactor and the sorbent was characterized by X-ray diffraction and nitrogen adsorption. It is confirmed that TiO2 shows a positive effect on the adsorption process of Na2CO3 and the reaction rate is observed to increase significantly, especially in the first 10 min. Moreover, TiO2 is stable within the temperature range of the process and no other Ti-compounds are detected. The carbonation products are NaHCO3 and Na5H3 (CO3 )4. The surface area and the pore volume of the sorbent keep stable after 14 cycles. The Fourier transform infrared spectroscopy and the X-ray photoelectron spectroscopy are used to analyze the effect mechanism of TiO2 on CO2 adsorption process of Na2CO3/Al2O3.展开更多
Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of pro...Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of products is profoundly influenced by the catalyst structure.In this study,Fe_(2)O_(3)-doped NiSO_(4)/Al_(2)O_(3) catalysts have been meticulously developed to facilitate the selective trimerization of propylene under mild conditions.Significantly,the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst demonstrates an enhanced reaction rate(48.5 mmol_(C3)/(g_(cat).·h)),alongside a high yield of C9(~32.2%),significantly surpassing the performance of the NiSO_(4)/Al_(2)O_(3) catalyst(C9:~24.1%).The incorporation of Fe_(2)O_(3) modifies the migration process of sulfate ions,altering the Lewis acidity of the electron-deficient Ni and Fe sites on the catalyst and resulting a shift in product distribution from a Schulz-Flory distribution to a Poisson distribution.This shift is primarily ascribed to the heightened energy barrier for theβ-H elimination reaction in the C6 alkyl intermediates on the doped catalyst,further promoting polymerization to yield a greater quantity of Type II C9.Furthermore,the validation of the Cossee-Arlman mechanism within the reaction pathway has been confirmed.It is noteworthy that the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst exhibits remarkable stability exceeding 80 h in the selective trimerization of propylene.These research findings significantly enhance our understanding of the mechanisms underlying olefin oligomerization reactions and provide invaluable insights for the development of more effective catalysts.展开更多
The development of high-performance cathode materials is critical to the practical application of sodiumion batteries(SIBs).O3-type NaCrO_(2)(NCO)is one of the most competitive cathodes,but it suffers from rapid capac...The development of high-performance cathode materials is critical to the practical application of sodiumion batteries(SIBs).O3-type NaCrO_(2)(NCO)is one of the most competitive cathodes,but it suffers from rapid capacity decay caused by severe irreversible structural evolution.An Mg-Ti co-doped Na_(0.99)Cr_(0.95)Mg_(0.02)Ti_(0.03)O_(2)(NCO-MT)cathode material is designed and synthesized via a facile solid-state reaction to enhance the cyclability of NCO.A capacity retention of 71.6%after 2500 cycles with the capacity fade rate of 0.011%per cycle is achieved for NCO-MT at 5 C,which is attributed to the highly reversible crystal structure during cycling.Our findings offer a novel insight into the high-performance O3-type layered cathode materials for SIBs and are beneficial to promote the development of high-rate SIBs.展开更多
The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most sta...The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.展开更多
A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventiona...A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventional method, the new catalysts prepared via the new method exhibit much higher BET surface area and pore size, much smaller crystallite size and higher catalytic activity and selectivity in CO 2 hydrogenation to methanol. It is also found that the molar ratio of Cu + to Cu 0 on the surface of the catalyst obtained by coprecipitation-reduction is much higher than that on the reduced catalyst obtained by the conventional method, which could be crucial for its high activity and selectivity for catalytic hydrogenation of CO 2 to methanol.展开更多
基金The National Natural Science Foundation of China(No.51476030)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092110006)
文摘Abstract: In order to improve the reactivity of Na2CO3/Al2O3 sorbent with CO2, a new sorbent showing high reactivity was developed by doping Na2CO3/Al2O3 with TiO2 using impregnation. Fourteen multi-cycle carbonation/regeneration tests of the sorbent were carried out in a fluidized-bed reactor and the sorbent was characterized by X-ray diffraction and nitrogen adsorption. It is confirmed that TiO2 shows a positive effect on the adsorption process of Na2CO3 and the reaction rate is observed to increase significantly, especially in the first 10 min. Moreover, TiO2 is stable within the temperature range of the process and no other Ti-compounds are detected. The carbonation products are NaHCO3 and Na5H3 (CO3 )4. The surface area and the pore volume of the sorbent keep stable after 14 cycles. The Fourier transform infrared spectroscopy and the X-ray photoelectron spectroscopy are used to analyze the effect mechanism of TiO2 on CO2 adsorption process of Na2CO3/Al2O3.
文摘Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of products is profoundly influenced by the catalyst structure.In this study,Fe_(2)O_(3)-doped NiSO_(4)/Al_(2)O_(3) catalysts have been meticulously developed to facilitate the selective trimerization of propylene under mild conditions.Significantly,the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst demonstrates an enhanced reaction rate(48.5 mmol_(C3)/(g_(cat).·h)),alongside a high yield of C9(~32.2%),significantly surpassing the performance of the NiSO_(4)/Al_(2)O_(3) catalyst(C9:~24.1%).The incorporation of Fe_(2)O_(3) modifies the migration process of sulfate ions,altering the Lewis acidity of the electron-deficient Ni and Fe sites on the catalyst and resulting a shift in product distribution from a Schulz-Flory distribution to a Poisson distribution.This shift is primarily ascribed to the heightened energy barrier for theβ-H elimination reaction in the C6 alkyl intermediates on the doped catalyst,further promoting polymerization to yield a greater quantity of Type II C9.Furthermore,the validation of the Cossee-Arlman mechanism within the reaction pathway has been confirmed.It is noteworthy that the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst exhibits remarkable stability exceeding 80 h in the selective trimerization of propylene.These research findings significantly enhance our understanding of the mechanisms underlying olefin oligomerization reactions and provide invaluable insights for the development of more effective catalysts.
基金financially supported by National Key Research and Development Program of China(No.2022YFE0202400)the National Natural Science Foundation of China(No.22379103)+2 种基金Natural Science Foundation of Guangdong Province of China(No.2021A1515010388)the Science and Technology Projects of Suzhou City(No.SYC2022043)the Qing Lan Project of Jiangsu Province(2022)。
文摘The development of high-performance cathode materials is critical to the practical application of sodiumion batteries(SIBs).O3-type NaCrO_(2)(NCO)is one of the most competitive cathodes,but it suffers from rapid capacity decay caused by severe irreversible structural evolution.An Mg-Ti co-doped Na_(0.99)Cr_(0.95)Mg_(0.02)Ti_(0.03)O_(2)(NCO-MT)cathode material is designed and synthesized via a facile solid-state reaction to enhance the cyclability of NCO.A capacity retention of 71.6%after 2500 cycles with the capacity fade rate of 0.011%per cycle is achieved for NCO-MT at 5 C,which is attributed to the highly reversible crystal structure during cycling.Our findings offer a novel insight into the high-performance O3-type layered cathode materials for SIBs and are beneficial to promote the development of high-rate SIBs.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974077)the Natural Science Foundation of Shandong Province,China (Grant No. 2009ZRB01702)the Shandong Provincial Higher Educational Science and Technology Program,China (Grant No. J10LA08)
文摘The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.
文摘A novel coprecipitation-reduction process has been proposed for preparing highly selective Cu/ZnO/Al 2O 3 catalysts for methanol synthesis from CO 2 hydrogenation. Compared to the catalysts prepared by the conventional method, the new catalysts prepared via the new method exhibit much higher BET surface area and pore size, much smaller crystallite size and higher catalytic activity and selectivity in CO 2 hydrogenation to methanol. It is also found that the molar ratio of Cu + to Cu 0 on the surface of the catalyst obtained by coprecipitation-reduction is much higher than that on the reduced catalyst obtained by the conventional method, which could be crucial for its high activity and selectivity for catalytic hydrogenation of CO 2 to methanol.