Cloud service providers generally co-locate online services and batch jobs onto the same computer cluster,where the resources can be pooled in order to maximize data center resource utilization.Due to resource competi...Cloud service providers generally co-locate online services and batch jobs onto the same computer cluster,where the resources can be pooled in order to maximize data center resource utilization.Due to resource competition between batch jobs and online services,co-location frequently impairs the performance of online services.This study presents a quality of service(QoS)prediction-based schedulingmodel(QPSM)for co-locatedworkloads.The performance prediction of QPSM consists of two parts:the prediction of an online service’s QoS anomaly based on XGBoost and the prediction of the completion time of an offline batch job based on randomforest.On-line service QoS anomaly prediction is used to evaluate the influence of batch jobmix on on-line service performance,and batch job completion time prediction is utilized to reduce the total waiting time of batch jobs.When the same number of batch jobs are scheduled in experiments using typical test sets such as CloudSuite,the scheduling time required by QPSM is reduced by about 6 h on average compared with the first-come,first-served strategy and by about 11 h compared with the random scheduling strategy.Compared with the non-co-located situation,QPSM can improve CPU resource utilization by 12.15% and memory resource utilization by 5.7% on average.Experiments show that the QPSM scheduling strategy proposed in this study can effectively guarantee the quality of online services and further improve cluster resource utilization.展开更多
Leaf rust(LR) and stripe rust(YR) are important diseases in wheat producing areas worldwide and cause severe yield losses under favorable environmental conditions when susceptible varieties are grown. We determined th...Leaf rust(LR) and stripe rust(YR) are important diseases in wheat producing areas worldwide and cause severe yield losses under favorable environmental conditions when susceptible varieties are grown. We determined the genetic basis of resistance to LR and YR in variety Borlaug 100 by developing and phenotyping a population of 198 F6 recombinant inbred lines derived from a cross with the susceptible parent Apav#1. LR and YR phenotyping were conducted for 4 and 3 seasons, respectively, at CIMMYT research stations in Mexico under artificial epidemics. Mendelian segregation analyses indicated that 3–5 LR and 2 YR genes conferred resistance in Borlaug 100. Lr46/Yr29(1 BL), Yr17(2 AS) and Yr30(3 BS) were present in the resistant parent and segregated in the RIL population based on characterization by molecular markers linked to these genes. When present alone, Lr46/Yr29 caused average 13% and 16% reductions in LR and YR severities, respectively, in RILs. Similarly, Yr17 and Yr30 reduced YR severities by 57% and 11%, respectively. The Yr30 and the Yr17 translocation were also associated with 27% and 14% reductions, respectively, in LR severity, indicating that the 3 BS and 2 AS chromosomal regions likely carry new slow rusting LR resistance genes, temporarily designated as Lr B1 and Lr B2, respectively. Additive effects of Yr30*Yr17, Yr29*Yr17 and Yr29*Yr30 on YR and LR were significant and reduced YR severities by 56%,55%, and 45%, respectively, and LR severities by 34%, 40%, and 45%, respectively. Furthermore, interaction between the three genes was also significant, with mean reductions of 70% for YR and 54% for LR severities. Borlaug 100, or any one of the 21 lines with variable agronomic traits but carrying all three colocated resistance loci, can be used as resistance sources in wheat breeding programs.展开更多
Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom deg...Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.展开更多
The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS...The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS), very long baseline interferometry(VLBI), and satellite laser ranging(SLR) equipment. Co-location surveying of these sites was performed in 2012 and the accuracies of the solved tie vectors are approximately 5 mm.This paper proposes a mathematical model that handles the least squares adjustment of the 3D control network and calculates the tie vectors in one step, using all the available constraints in the adjustment. Using the new mathematical model, local tie vectors can be more precisely determined and their covariance more reasonably estimated.展开更多
Background Due to the restriction of display mode,in most of the virtual reality systems with multiple people in the same physical space,the program renders the scene based on the position and perspective of the one u...Background Due to the restriction of display mode,in most of the virtual reality systems with multiple people in the same physical space,the program renders the scene based on the position and perspective of the one user,so that other users just see the same scene,resulting in vision disorder.Methods To improve experience of multi-user co-located collaboration,in this study,we propose a fire drill system supporting co-located collaboration,in which three co-located users can collaborate to complete the virtual firefighting mission.Firstly,with multi-view stereoscopic projective display technology and ultra wideband(UWB)technology,co-located users can roam independently and watch virtual scenes through the correct perspective view based on their own position by wearing dedicated shutter glasses,thus carrying out different virtual tasks,which improves the flexibility of co-located collaboration.Secondly,we design simulated firefighting water-gun using the micro-electromechanical system sensor,through which users can interact with virtual environment,and thus provide a better interactive experience.Finally,we develop a workbench including a holographic display module and multi touch operation module for virtual scene assembly and virtual environment control.Results The controller can use the workbench to adjust the virtual layout in real time,and control the virtual task process to increase the flexibility and playability of system.Conclusions Our work can be employed in a wide range of related virtual reality applications.展开更多
Accelerated development of battery technologies heightens an interest in co-locating battery energy storage systems (BESSs) with renewable power plants for stacking of multiple revenue streams such as frequency respon...Accelerated development of battery technologies heightens an interest in co-locating battery energy storage systems (BESSs) with renewable power plants for stacking of multiple revenue streams such as frequency response services to AC grids. Frequency response market reforms in the UK introduce new end-state services and require evaluating techno-economic feasibility of co-location projects in new circumstances. This paper develops a BESS optimisation method to optimize capacity and operating strategy of a co-located BESS for providing latest Dynamic Containment (DC) services based on the UK perspective. BESS optimisation method simulates BESS delivering DC responses and following operational baselines for state of energy (SoE) restoration, as well as, coordinating with its co-located power plant. Then net present value of BESS co-location project is estimated from power flows across the system and maximised to suggest optimal BESS capacity, target energy footroom and/or headroom levels for baseline estimation, and possible SoE ranges suitable for energy interchange with its co-located power plant. BESS optimisation method is tested based on a particular transmission-level wind farm in the UK and discussed alongside operation and profitability of a BESS co-location project under frequency response market reforms.展开更多
Workload characterization is critical for resource management and scheduling.Recently,with the fast development of container technique,more and more cloud service providers like Google and Alibaba adopt containers to ...Workload characterization is critical for resource management and scheduling.Recently,with the fast development of container technique,more and more cloud service providers like Google and Alibaba adopt containers to provide cloud services,due to the low overheads.However,the characteristics of co-located diverse services(e.g.,interactive on-line services,off-line computing services)running in containers are still not clear.In this paper,we present a comprehensive analysis of the characteristics of co-located workloads running in containers on the same server from the perspective of hardware events.Our study quantifies and reveals the system behavior from the micro-architecture level when workloads are running in different co-location patterns.Through the analysis of typical hardware events,we provide recommended/unrecommended co-location workload patterns which provide valuable deployment suggestions for datacenter administrators.展开更多
基金supported by the NationalNatural Science Foundation of China(No.61972118)the Key R&D Program of Zhejiang Province(No.2023C01028).
文摘Cloud service providers generally co-locate online services and batch jobs onto the same computer cluster,where the resources can be pooled in order to maximize data center resource utilization.Due to resource competition between batch jobs and online services,co-location frequently impairs the performance of online services.This study presents a quality of service(QoS)prediction-based schedulingmodel(QPSM)for co-locatedworkloads.The performance prediction of QPSM consists of two parts:the prediction of an online service’s QoS anomaly based on XGBoost and the prediction of the completion time of an offline batch job based on randomforest.On-line service QoS anomaly prediction is used to evaluate the influence of batch jobmix on on-line service performance,and batch job completion time prediction is utilized to reduce the total waiting time of batch jobs.When the same number of batch jobs are scheduled in experiments using typical test sets such as CloudSuite,the scheduling time required by QPSM is reduced by about 6 h on average compared with the first-come,first-served strategy and by about 11 h compared with the random scheduling strategy.Compared with the non-co-located situation,QPSM can improve CPU resource utilization by 12.15% and memory resource utilization by 5.7% on average.Experiments show that the QPSM scheduling strategy proposed in this study can effectively guarantee the quality of online services and further improve cluster resource utilization.
基金supported by the International Cooperation and Exchange of the National Natural Science Foundation of China(31861143010)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation+3 种基金Australian Grains Research and Development Corporation(GRDC)with funding to the Australian Cereal Rust Control Program(ACRCP)CGIAR Research Program WHEAT(CRP-WHEAT)the Open Project of Qinghai Provincial Key Laboratory of Crop Molecular Breeding(2021-ZJ-Y05)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24030102)。
文摘Leaf rust(LR) and stripe rust(YR) are important diseases in wheat producing areas worldwide and cause severe yield losses under favorable environmental conditions when susceptible varieties are grown. We determined the genetic basis of resistance to LR and YR in variety Borlaug 100 by developing and phenotyping a population of 198 F6 recombinant inbred lines derived from a cross with the susceptible parent Apav#1. LR and YR phenotyping were conducted for 4 and 3 seasons, respectively, at CIMMYT research stations in Mexico under artificial epidemics. Mendelian segregation analyses indicated that 3–5 LR and 2 YR genes conferred resistance in Borlaug 100. Lr46/Yr29(1 BL), Yr17(2 AS) and Yr30(3 BS) were present in the resistant parent and segregated in the RIL population based on characterization by molecular markers linked to these genes. When present alone, Lr46/Yr29 caused average 13% and 16% reductions in LR and YR severities, respectively, in RILs. Similarly, Yr17 and Yr30 reduced YR severities by 57% and 11%, respectively. The Yr30 and the Yr17 translocation were also associated with 27% and 14% reductions, respectively, in LR severity, indicating that the 3 BS and 2 AS chromosomal regions likely carry new slow rusting LR resistance genes, temporarily designated as Lr B1 and Lr B2, respectively. Additive effects of Yr30*Yr17, Yr29*Yr17 and Yr29*Yr30 on YR and LR were significant and reduced YR severities by 56%,55%, and 45%, respectively, and LR severities by 34%, 40%, and 45%, respectively. Furthermore, interaction between the three genes was also significant, with mean reductions of 70% for YR and 54% for LR severities. Borlaug 100, or any one of the 21 lines with variable agronomic traits but carrying all three colocated resistance loci, can be used as resistance sources in wheat breeding programs.
基金supported by the National Natural Science Fundation of China (61671137)。
文摘Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.
基金sponsored by the Crustal Movement Observation Network of China(CMONOC)partially supported by the Natural Science Foundation of China(41274035,41174023)
文摘The seven co-located sites of the Crustal Movement Observation Network of China(CMONOC) in Shanghai, Wuhan, Kunming, Beijing, Xi'an, Changchun, and Urumqi are equipped with Global Navigation Satellite System(GNSS), very long baseline interferometry(VLBI), and satellite laser ranging(SLR) equipment. Co-location surveying of these sites was performed in 2012 and the accuracies of the solved tie vectors are approximately 5 mm.This paper proposes a mathematical model that handles the least squares adjustment of the 3D control network and calculates the tie vectors in one step, using all the available constraints in the adjustment. Using the new mathematical model, local tie vectors can be more precisely determined and their covariance more reasonably estimated.
基金National Key Research and Development Program of China(2018YFC0831003)Key R&D project of Shandong Province(2016GGX106001).
文摘Background Due to the restriction of display mode,in most of the virtual reality systems with multiple people in the same physical space,the program renders the scene based on the position and perspective of the one user,so that other users just see the same scene,resulting in vision disorder.Methods To improve experience of multi-user co-located collaboration,in this study,we propose a fire drill system supporting co-located collaboration,in which three co-located users can collaborate to complete the virtual firefighting mission.Firstly,with multi-view stereoscopic projective display technology and ultra wideband(UWB)technology,co-located users can roam independently and watch virtual scenes through the correct perspective view based on their own position by wearing dedicated shutter glasses,thus carrying out different virtual tasks,which improves the flexibility of co-located collaboration.Secondly,we design simulated firefighting water-gun using the micro-electromechanical system sensor,through which users can interact with virtual environment,and thus provide a better interactive experience.Finally,we develop a workbench including a holographic display module and multi touch operation module for virtual scene assembly and virtual environment control.Results The controller can use the workbench to adjust the virtual layout in real time,and control the virtual task process to increase the flexibility and playability of system.Conclusions Our work can be employed in a wide range of related virtual reality applications.
基金supported by the research programme of the Electrical Infrastructure Research Hub in collaboration with the Offshore Renewable Energy Catapult.
文摘Accelerated development of battery technologies heightens an interest in co-locating battery energy storage systems (BESSs) with renewable power plants for stacking of multiple revenue streams such as frequency response services to AC grids. Frequency response market reforms in the UK introduce new end-state services and require evaluating techno-economic feasibility of co-location projects in new circumstances. This paper develops a BESS optimisation method to optimize capacity and operating strategy of a co-located BESS for providing latest Dynamic Containment (DC) services based on the UK perspective. BESS optimisation method simulates BESS delivering DC responses and following operational baselines for state of energy (SoE) restoration, as well as, coordinating with its co-located power plant. Then net present value of BESS co-location project is estimated from power flows across the system and maximised to suggest optimal BESS capacity, target energy footroom and/or headroom levels for baseline estimation, and possible SoE ranges suitable for energy interchange with its co-located power plant. BESS optimisation method is tested based on a particular transmission-level wind farm in the UK and discussed alongside operation and profitability of a BESS co-location project under frequency response market reforms.
基金This work is supported by the National Key Research and Development Program of China under Grant No.2018YFB1004804the National Natural Science Foundation of China under Grant No.61702492the Shenzhen Basic Research Program under Grant Nos.JCYJ20170818153016513 and JCYJ20170307164747920,and Alibaba Innovative Research(AIR)Project.
文摘Workload characterization is critical for resource management and scheduling.Recently,with the fast development of container technique,more and more cloud service providers like Google and Alibaba adopt containers to provide cloud services,due to the low overheads.However,the characteristics of co-located diverse services(e.g.,interactive on-line services,off-line computing services)running in containers are still not clear.In this paper,we present a comprehensive analysis of the characteristics of co-located workloads running in containers on the same server from the perspective of hardware events.Our study quantifies and reveals the system behavior from the micro-architecture level when workloads are running in different co-location patterns.Through the analysis of typical hardware events,we provide recommended/unrecommended co-location workload patterns which provide valuable deployment suggestions for datacenter administrators.