Catalytic dehydrogenation represents one of the most effective methods for converting low-carbon hydrocarbons into monoolefins and hydrogen with identical carbon numbers.In this study,microporous(HZSMi)and meso-microp...Catalytic dehydrogenation represents one of the most effective methods for converting low-carbon hydrocarbons into monoolefins and hydrogen with identical carbon numbers.In this study,microporous(HZSMi)and meso-microporous molecular sieves(HZSMu)with a Si/Al atomic ratio of 150,synthesized in the laboratory,were prepared via hydrothermal synthesis.These supports were impregnated with 2.4%Co using the incipient wetness impregnation method and subsequently modified by introducing the metal additives Zr and Sn.Notably,the Co-Sn/HZSMu catalyst exhibited the highest stability,achieving a propylene selectivity of 95.3% within 400 min while maintaining robust activity.A series of characterization analyses reveal that the HZSMu molecular sieve possesses distinctive weaving properties.The synergistic effect between mesopores facilitates the adsorption and activation of reactants while preventing pore blockage,thus promoting the rapid diffusion of reactants on its surface.The incorporation of the metal additive Sn promotes the uniform dispersion of Co,mitigating the occurrence of side reactions and enhancing the catalytic performance and reaction stability of the catalyst.展开更多
Surface chemical properties of supports have an important influence on active sites and their catalytic behavio r.Here,we fabricated a series of cobalt-based catalysts supported by carbon layer-coated ordered mesoporo...Surface chemical properties of supports have an important influence on active sites and their catalytic behavio r.Here,we fabricated a series of cobalt-based catalysts supported by carbon layer-coated ordered mesoporous silica(OMS) composites for higher alcohol synthesis(HAS).The carbon layers were derived from different sources and uniformly coated on the porous surface of OMS.Combined with the characterization results of carbonized catalysts,it is demonstrated that the carbon layer-coated supports significantly enhanced the metal dispersion and increased the ratio of Co2+ to Co0 sites,which further increased the CO conversion and alcohols selectivity.Moreover,it is found that the catalytic activity changed in line with the amount of defects and surface oxygenic groups of carbon layers,which re sulted from the different carbon sources.The highest space time yield of C2+OH was 27.5 mmol gcat-1h-1)obtained by the catalyst coated with glucose-derived carbon layer.But the carbon source is not the key factor influencing the distribution of Co-Co2+ dual sites and shows little effect on selectivity in HAS.These results may guide for further design of carbon supported catalysts.展开更多
The reverse water-gas shift(RWGS)reaction holds great promise for CO_(2)reduction and achieving carbon neutrality,particularly when driven by renewable and abundant solar energy.Among various investigated catalysts,Co...The reverse water-gas shift(RWGS)reaction holds great promise for CO_(2)reduction and achieving carbon neutrality,particularly when driven by renewable and abundant solar energy.Among various investigated catalysts,Co-based materials have demonstrated high catalytic activity for CO_(2)hydrogenation,and the easily accessible Co or CoO_(x)catalysts tend to produce CH_(4)(via the Sabatier reaction)rather than CO(via the RWGS reaction)at relatively low temperatures(≤400℃).Besides the composition tuning to construct specific active sites(such as forming Co_(2)C),the manipulation of the chemical microenvironment is also considered a highly effective strategy for regulating product selectivity,as have been broadly demonstrated in electrochemistry and zeolite research fields.Herein,alkaline Sr sites aiming at enhancing the CO_(2)coverage at catalyst surface are placed in close proximity to the catalytically active Co centers,thus offering balanced supply of reactants within the reactive zone.The asdesigned SrCoO_(x)catalyst through in situ decomposition of the SrCoO_(2).52 precursor exhibits a significant enhancement in CO selectivity(from 42%to 91%)and exceptional stability throughout a 300-h continuous reaction.This work broadens the application scope of chemical microenvironment manipulation strategies and introduces a novel avenue for future photothermal catalyst development.展开更多
Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under ...Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.展开更多
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a...Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.展开更多
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and...Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.展开更多
To explain the precipitation mechanism ofχphase in Co-based superalloys,the microstructural evolution of Co−Ti−Mo superalloys subjected to aging was investigated by X-ray diffraction(XRD),scanning electron microscope...To explain the precipitation mechanism ofχphase in Co-based superalloys,the microstructural evolution of Co−Ti−Mo superalloys subjected to aging was investigated by X-ray diffraction(XRD),scanning electron microscope(SEM)and transmission electron microscope(TEM).The results show that the needle-likeχphase is mainly composed ofD0_(19)-Co_(3)(Ti,Mo),which is transformed from L1_(2-γ′)phase,and a specific orientation relationship exists between them.χphase is nucleated through the shearing ofγ′phase due to the influence of stacking fault.The crystal orientation relationship between L1_(2) andD0_(19)can be confirmed as{111}L1_(2)//{0001}_(D0_(19)),and<112>_(L1_(2))//<1100>_(D0_(19)).The growth ofD0_(19-χ)phase depends on the diffusions of Ti and Mo,and consumes a large number of elements.This progress leads to the appearance ofγ′precipitation depletion zone(PDZ)aroundD0_(19-χ)phase.The addition of Ni improves the stability of L1_(2-γ′)phase and the mechanical properties of Co-based superalloys.展开更多
Hydroformylation of olefins is one of the highest-volume industrial reactions to meet the vast demands for aldehydes as well as their derivatives.Homogeneous Co complexes were the original catalysts industrialized sin...Hydroformylation of olefins is one of the highest-volume industrial reactions to meet the vast demands for aldehydes as well as their derivatives.Homogeneous Co complexes were the original catalysts industrialized since 1960s.Heterogeneous catalysis is considered superior owing to the facile separation of catalysts from products,shorter technical process,and reduced manufacturing costs.Unexpectedly,there has not been a single case of plant using heterogenized Co-based catalyst successfully.To address the separation issue and understand the catalytic mechanism of the reactions,this review summarizes the progress in heterogeneous systems and provides a detailed discussion of their catalytic performance.Strategies for stabilizing Co species through support modification and additive incorporation are carefully considered to elucidate why heterogeneous systems have not yet succeeded on an industrial scale.Furthermore,we provide our insights for the development of heterogeneous catalytic hydroformylation,including the challenges,opportunities,and outlooks.The aim is to deepen the fundamental understanding of heterogeneous alkene hydroformylation,guiding the community's research efforts towards realizing its successful application in the future.展开更多
Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen e...Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.展开更多
Combining terrestrial biomass as the reductant with submarine-type hydrothermal environments for CO_(2)reduction represents a possible approach for novel energy production systems that sustainably circulate carbon.How...Combining terrestrial biomass as the reductant with submarine-type hydrothermal environments for CO_(2)reduction represents a possible approach for novel energy production systems that sustainably circulate carbon.However,increasing the reductive power of biomass is the main limitation of this potential method.Herein,we demonstrate that Co-doped with small amounts of Pd enhances the reduction of CO_(2)by selectively producing an active intermediate from carbohydrates.This catalytic reaction utilized glucose as a reductant to achieve high formate production efficiency(458.6 g kg^(-1))with nearly 100%selectivity with 7.5 wt%Pd1Co_(20)/γ–Al_(2)O_(3)at a moderate temperature of 225℃.The regulation of the electronic structure of the catalytic Co surface by the dopant Pd plays a key role in promoting the C–C bond cleavage of glucose and hydrogen transfer for CO_(2)reduction.The findings presented here indicate that biomass can serve as the hydrogen source for CO_(2)reduction and provide insight into the potential utilization of CO_(2)in sustainable industrial applications.展开更多
Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li–S batteries.Our results demonstrate that Fe ...Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li–S batteries.Our results demonstrate that Fe CoN8@Gra not only possesses moderate adsorption energies towards Li2Snspecies,but also exhibits superior catalytic activity for both reduction and oxidation reactions of the sulfur cathode.Moreover,the metallic property of the diatomic catalysts can be well maintained after Li2Snadsorption,which could help the sulfur cathode to maintain high conductivity during the whole charge–discharge process.Given these exceptional properties,it is expected that Fe CoN8@Gra could be a promising diatomic catalyst for Li–S batteries and afford insights for further development of advanced Li–S batteries.展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction...Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.展开更多
Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly wh...Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly when their coordination structures are carefully engineered.Here,we develop a chromium-based SAC featuring a unique undercoordinated CrN_(3) configuration to boost sulfur electrochemistry.Compared with conventional CrN_(4),the CrN_(3) motif lowers 3d orbital occupancy and meanwhile activates the in-plane hybridizations with S 3p orbitals upon interaction with polysulfides,contributing to moderate adsorption strength and reduced energy barriers for bidirectional sulfur conversions.Additionally,the integration of the two-dimensional(2D)porous framework ensures abundant electrochemically active surfaces and efficiently exposed active sites.As a result,CrN_(3)-based cells demonstrate fast and durable sulfur redox reactions,enabling an ultralow capacity decay of 0.0075%per cycle over 1000 cycles and a high-rate capability of 651.9 mAh·g^(-1)at 5 C.The CrN_(3) catalyst retains robust catalytic efficiency under demanding conditions,delivering a high areal capacity of 5.53 mAh·cm^(-2) at high sulfur loading and lean electrolyte.This work establishes a compelling paradigm of SAC coordination engineering for designing advanced sulfur electrocatalysts for next-generation LSBs.展开更多
High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environm...High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the li...Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the linear scaling relationship,thereby exhibiting large overpotentials.In the lattice oxygen mechanism(LOM),the OER can be enhanced by enabling direct O_(2)formation.However,this enhancement is accompanied by the generation of oxygen vacancies,which presents a significant challenge to the long-term stability of LOMOER,particularly when operating at high current densities.Recently,the*O-*O coupling mechanism(OCM)has emerged as a promising alternative;it not only breaks the linear scaling relationship but also ensures catalytic stability.This review encapsulates the cutting-edge advancements in electrocatalysts that are grounded in the OCM,offering a detailed interpretation on the foundational principles guiding the design of OCM-OER catalysts.It also highlights recent theoretical investigations combining machine learning(ML)with density functional theory(DFT)calculations to reveal OER mechanisms.At the end of this review,the challenges and opportunities associated with OCM-OER electrocatalysts are discussed.展开更多
Fe-N-C catalysts,as promising non-precious metal alternatives for the oxygen reduction reaction(ORR),still suffer from severe mass transport limitations in proton exchange membrane fuel cells(PEMFCs)due to water flood...Fe-N-C catalysts,as promising non-precious metal alternatives for the oxygen reduction reaction(ORR),still suffer from severe mass transport limitations in proton exchange membrane fuel cells(PEMFCs)due to water flooding of active sites embedded in micropores.Although pore engineering through a selected template is a general strategy,the structural features of an ideal template,particularly those governing the exposure of active sites and thus affecting mass transport,remain elusive.Here,we demonstrate that low-porosity carbon templates maximize the ratio of active sites distributed at or near the surface,thereby enhancing their exposure and accessibility while reducing mass transport resistance during the ORR process.The C_(lp-1)@PPy and C_(lp-2)@PPy(PPy=polypyrrole)catalysts,derived from low-porosity carbon templates,achieve peak power densities of 0.96 and 1.03 W·cm^(-2) under H_(2)/O_(2)and 0.50 and 0.52 W·cm^(-2) under H_(2)/air,demonstrating excellent performance in PEMFC tests.Structural and electrochemical characterizations reveal that the enhanced surface exposure of active sites effectively mitigates mass transport resistance during the ORR,thereby offering a general design principle for overcoming mass transport limitations in Fe-N-C catalysts for PEMFC applications.展开更多
Dual-atom-site catalysts(DASCs)have garnered a lot of interest in the electrocatalysis community because of their atomic usage,stability,activity,and selectivity.This review systematically introduces the latest advanc...Dual-atom-site catalysts(DASCs)have garnered a lot of interest in the electrocatalysis community because of their atomic usage,stability,activity,and selectivity.This review systematically introduces the latest advancements of DASCs for electrocatalytic applications.Design principles of DASCs are first discussed,including atom-atom,atom-cluster,and atom-particle synergy.Then,rational modulation tactics are creatively proposed to speed up the construction of high-performance DASCs for uncovering structure-performance relationships.Moreover,advanced characterization techniques are provided to show the dynamic evolution of dual-atom sites throughout electrocatalysis.Finally,future challenges and perspectives are taken into account.This paper provides useful directions for a better understanding and design of DASCs for eco-friendly energy storage and conversion technologies.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21968034).
文摘Catalytic dehydrogenation represents one of the most effective methods for converting low-carbon hydrocarbons into monoolefins and hydrogen with identical carbon numbers.In this study,microporous(HZSMi)and meso-microporous molecular sieves(HZSMu)with a Si/Al atomic ratio of 150,synthesized in the laboratory,were prepared via hydrothermal synthesis.These supports were impregnated with 2.4%Co using the incipient wetness impregnation method and subsequently modified by introducing the metal additives Zr and Sn.Notably,the Co-Sn/HZSMu catalyst exhibited the highest stability,achieving a propylene selectivity of 95.3% within 400 min while maintaining robust activity.A series of characterization analyses reveal that the HZSMu molecular sieve possesses distinctive weaving properties.The synergistic effect between mesopores facilitates the adsorption and activation of reactants while preventing pore blockage,thus promoting the rapid diffusion of reactants on its surface.The incorporation of the metal additive Sn promotes the uniform dispersion of Co,mitigating the occurrence of side reactions and enhancing the catalytic performance and reaction stability of the catalyst.
基金support from the National Natural Science Foundation of China(Nos.U1462204,21706184)the National Postdoctoral Program for Innovative Talents of China(No.BX20180221)。
文摘Surface chemical properties of supports have an important influence on active sites and their catalytic behavio r.Here,we fabricated a series of cobalt-based catalysts supported by carbon layer-coated ordered mesoporous silica(OMS) composites for higher alcohol synthesis(HAS).The carbon layers were derived from different sources and uniformly coated on the porous surface of OMS.Combined with the characterization results of carbonized catalysts,it is demonstrated that the carbon layer-coated supports significantly enhanced the metal dispersion and increased the ratio of Co2+ to Co0 sites,which further increased the CO conversion and alcohols selectivity.Moreover,it is found that the catalytic activity changed in line with the amount of defects and surface oxygenic groups of carbon layers,which re sulted from the different carbon sources.The highest space time yield of C2+OH was 27.5 mmol gcat-1h-1)obtained by the catalyst coated with glucose-derived carbon layer.But the carbon source is not the key factor influencing the distribution of Co-Co2+ dual sites and shows little effect on selectivity in HAS.These results may guide for further design of carbon supported catalysts.
基金supported by the National Natural Science Foundation of China(22379065,22309080,22372078)the National Science Fund for Distinguished Young Scholars(22025202)+1 种基金the National Key Research and Development Program of China(2020YFA0710302)the Natural Science Foundation of Jiangsu Province of China(BK20232021)。
文摘The reverse water-gas shift(RWGS)reaction holds great promise for CO_(2)reduction and achieving carbon neutrality,particularly when driven by renewable and abundant solar energy.Among various investigated catalysts,Co-based materials have demonstrated high catalytic activity for CO_(2)hydrogenation,and the easily accessible Co or CoO_(x)catalysts tend to produce CH_(4)(via the Sabatier reaction)rather than CO(via the RWGS reaction)at relatively low temperatures(≤400℃).Besides the composition tuning to construct specific active sites(such as forming Co_(2)C),the manipulation of the chemical microenvironment is also considered a highly effective strategy for regulating product selectivity,as have been broadly demonstrated in electrochemistry and zeolite research fields.Herein,alkaline Sr sites aiming at enhancing the CO_(2)coverage at catalyst surface are placed in close proximity to the catalytically active Co centers,thus offering balanced supply of reactants within the reactive zone.The asdesigned SrCoO_(x)catalyst through in situ decomposition of the SrCoO_(2).52 precursor exhibits a significant enhancement in CO selectivity(from 42%to 91%)and exceptional stability throughout a 300-h continuous reaction.This work broadens the application scope of chemical microenvironment manipulation strategies and introduces a novel avenue for future photothermal catalyst development.
基金National Natural Science Foundation of China(22478310,U21A20286 and 22206054)。
文摘Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction(OER).Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process.However,most of them undergo incomplete reconstruction with limited thickness of reconstruction layer,leading to low component utilization and arduous exploration of real catalytic mechanism.Herein,we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER.The hollow phytic acid(PA)cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability,in favor of the fast and complete reconstruction.A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH-to form Co(Fe)(OH)xand subsequent potential-driven oxidation to Co(Fe)OOH.The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm^(-2)and a long-term stability.The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure,accounting for the enhanced OER activity.The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.
基金National Natural Science Foundation of China(52071126)Natural Science Foundation of Tianjin City,China(22JCQNJC01240)+2 种基金Central Guidance on Local Science and Technology Development Fund of Hebei Province(226Z1009G)Special Funds for Science and Technology Innovation in Hebei(2022X19)Anhui Provincial Natural Science Foundation(2308085ME135)。
文摘Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.
基金supported by the National Natural Science Foundation of China(51872115,12234018 and 52101256)Beijing Synchrotron Radiation Facility(BSRF,4B9A)。
文摘Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.
基金The financial supports from the National Natural Science Foundation of China(Nos.52171107,52201203)the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204)the“333”Talent Project of Hebei Province,China(No.B20221001)are gratefully acknowledged.
文摘To explain the precipitation mechanism ofχphase in Co-based superalloys,the microstructural evolution of Co−Ti−Mo superalloys subjected to aging was investigated by X-ray diffraction(XRD),scanning electron microscope(SEM)and transmission electron microscope(TEM).The results show that the needle-likeχphase is mainly composed ofD0_(19)-Co_(3)(Ti,Mo),which is transformed from L1_(2-γ′)phase,and a specific orientation relationship exists between them.χphase is nucleated through the shearing ofγ′phase due to the influence of stacking fault.The crystal orientation relationship between L1_(2) andD0_(19)can be confirmed as{111}L1_(2)//{0001}_(D0_(19)),and<112>_(L1_(2))//<1100>_(D0_(19)).The growth ofD0_(19-χ)phase depends on the diffusions of Ti and Mo,and consumes a large number of elements.This progress leads to the appearance ofγ′precipitation depletion zone(PDZ)aroundD0_(19-χ)phase.The addition of Ni improves the stability of L1_(2-γ′)phase and the mechanical properties of Co-based superalloys.
文摘Hydroformylation of olefins is one of the highest-volume industrial reactions to meet the vast demands for aldehydes as well as their derivatives.Homogeneous Co complexes were the original catalysts industrialized since 1960s.Heterogeneous catalysis is considered superior owing to the facile separation of catalysts from products,shorter technical process,and reduced manufacturing costs.Unexpectedly,there has not been a single case of plant using heterogenized Co-based catalyst successfully.To address the separation issue and understand the catalytic mechanism of the reactions,this review summarizes the progress in heterogeneous systems and provides a detailed discussion of their catalytic performance.Strategies for stabilizing Co species through support modification and additive incorporation are carefully considered to elucidate why heterogeneous systems have not yet succeeded on an industrial scale.Furthermore,we provide our insights for the development of heterogeneous catalytic hydroformylation,including the challenges,opportunities,and outlooks.The aim is to deepen the fundamental understanding of heterogeneous alkene hydroformylation,guiding the community's research efforts towards realizing its successful application in the future.
基金Supported by the National Natural Science Foundation of China(No.52273056)the Science and Technology Development Program of Jilin Province,China(No.YDZJ202501ZYTS305)。
文摘Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.
基金supported by the National Natural Science Foundation of China(21978170 and 22108171)the Natural Science Foundation of Shanghai(23ZR1435200)the Shanghai Key Laboratory of Hydrogen Science&Center of Hydrogen Science,Shanghai Jiao Tong University,China.
文摘Combining terrestrial biomass as the reductant with submarine-type hydrothermal environments for CO_(2)reduction represents a possible approach for novel energy production systems that sustainably circulate carbon.However,increasing the reductive power of biomass is the main limitation of this potential method.Herein,we demonstrate that Co-doped with small amounts of Pd enhances the reduction of CO_(2)by selectively producing an active intermediate from carbohydrates.This catalytic reaction utilized glucose as a reductant to achieve high formate production efficiency(458.6 g kg^(-1))with nearly 100%selectivity with 7.5 wt%Pd1Co_(20)/γ–Al_(2)O_(3)at a moderate temperature of 225℃.The regulation of the electronic structure of the catalytic Co surface by the dopant Pd plays a key role in promoting the C–C bond cleavage of glucose and hydrogen transfer for CO_(2)reduction.The findings presented here indicate that biomass can serve as the hydrogen source for CO_(2)reduction and provide insight into the potential utilization of CO_(2)in sustainable industrial applications.
基金the National Natural Science Foundation of China(Grant Nos.51972140 and 51903164)the Fund from Science and Technology Department of Jilin Province,China(Grant No.20200201069JC).
文摘Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li–S batteries.Our results demonstrate that Fe CoN8@Gra not only possesses moderate adsorption energies towards Li2Snspecies,but also exhibits superior catalytic activity for both reduction and oxidation reactions of the sulfur cathode.Moreover,the metallic property of the diatomic catalysts can be well maintained after Li2Snadsorption,which could help the sulfur cathode to maintain high conductivity during the whole charge–discharge process.Given these exceptional properties,it is expected that Fe CoN8@Gra could be a promising diatomic catalyst for Li–S batteries and afford insights for further development of advanced Li–S batteries.
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金funded by the Innovative Research Group Project of the National Natural Science Foundation of China(52121004)the Research Development Fund(No.RDF-21-02-060)by Xi’an Jiaotong-Liverpool University+1 种基金support received from the Suzhou Industrial Park High Quality Innovation Platform of Functional Molecular Materials and Devices(YZCXPT2023105)the XJTLU Advanced Materials Research Center(AMRC).
文摘Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.
基金the National Natural Science Foundation of China(No.22379069)Fundamental Research Funds for the Central Universities(No.30922010304).
文摘Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly when their coordination structures are carefully engineered.Here,we develop a chromium-based SAC featuring a unique undercoordinated CrN_(3) configuration to boost sulfur electrochemistry.Compared with conventional CrN_(4),the CrN_(3) motif lowers 3d orbital occupancy and meanwhile activates the in-plane hybridizations with S 3p orbitals upon interaction with polysulfides,contributing to moderate adsorption strength and reduced energy barriers for bidirectional sulfur conversions.Additionally,the integration of the two-dimensional(2D)porous framework ensures abundant electrochemically active surfaces and efficiently exposed active sites.As a result,CrN_(3)-based cells demonstrate fast and durable sulfur redox reactions,enabling an ultralow capacity decay of 0.0075%per cycle over 1000 cycles and a high-rate capability of 651.9 mAh·g^(-1)at 5 C.The CrN_(3) catalyst retains robust catalytic efficiency under demanding conditions,delivering a high areal capacity of 5.53 mAh·cm^(-2) at high sulfur loading and lean electrolyte.This work establishes a compelling paradigm of SAC coordination engineering for designing advanced sulfur electrocatalysts for next-generation LSBs.
基金supported by the Australian Research Council(ARC)Projects(DP220101139,DP220101142,and LP240100542).
文摘High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
基金supported by the National Natural Science Foundation of China(Nos.22373063 and 22302005)Fundamental Research Funds for the Central Universities of China(No.GK202203002)+1 种基金China Postdoctoral Science Foundation(No.2023M730044)Technology Innovation Leading Program of Shaanxi(Program No.2023KXJ-007).
文摘Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the linear scaling relationship,thereby exhibiting large overpotentials.In the lattice oxygen mechanism(LOM),the OER can be enhanced by enabling direct O_(2)formation.However,this enhancement is accompanied by the generation of oxygen vacancies,which presents a significant challenge to the long-term stability of LOMOER,particularly when operating at high current densities.Recently,the*O-*O coupling mechanism(OCM)has emerged as a promising alternative;it not only breaks the linear scaling relationship but also ensures catalytic stability.This review encapsulates the cutting-edge advancements in electrocatalysts that are grounded in the OCM,offering a detailed interpretation on the foundational principles guiding the design of OCM-OER catalysts.It also highlights recent theoretical investigations combining machine learning(ML)with density functional theory(DFT)calculations to reveal OER mechanisms.At the end of this review,the challenges and opportunities associated with OCM-OER electrocatalysts are discussed.
基金the National Key R&D Program of China(No.2024YFA1509500)the National Natural Science Foundation of China(No.22479010)+5 种基金the financial support from the Chongqing Municipal Natural Science Foundation(No.CSTB2024NSCQJQX0034)Shenzhen Science and Technology Program(No.KJZD20240903101359020)the financial support from the National Natural Science Foundation of China(No.22372004)the support from the Experimental Center of Advanced Materials of the Beijing Institute of Technologythe technical support from Biological and Medical Engineering Core Facilities of Beijing Institute of Technologythe Analysis and Testing Center of Beijing Institute of Technology.
文摘Fe-N-C catalysts,as promising non-precious metal alternatives for the oxygen reduction reaction(ORR),still suffer from severe mass transport limitations in proton exchange membrane fuel cells(PEMFCs)due to water flooding of active sites embedded in micropores.Although pore engineering through a selected template is a general strategy,the structural features of an ideal template,particularly those governing the exposure of active sites and thus affecting mass transport,remain elusive.Here,we demonstrate that low-porosity carbon templates maximize the ratio of active sites distributed at or near the surface,thereby enhancing their exposure and accessibility while reducing mass transport resistance during the ORR process.The C_(lp-1)@PPy and C_(lp-2)@PPy(PPy=polypyrrole)catalysts,derived from low-porosity carbon templates,achieve peak power densities of 0.96 and 1.03 W·cm^(-2) under H_(2)/O_(2)and 0.50 and 0.52 W·cm^(-2) under H_(2)/air,demonstrating excellent performance in PEMFC tests.Structural and electrochemical characterizations reveal that the enhanced surface exposure of active sites effectively mitigates mass transport resistance during the ORR,thereby offering a general design principle for overcoming mass transport limitations in Fe-N-C catalysts for PEMFC applications.
基金supported by the National Natural Science Foundation of China(Nos.92580106 and 22075099).
文摘Dual-atom-site catalysts(DASCs)have garnered a lot of interest in the electrocatalysis community because of their atomic usage,stability,activity,and selectivity.This review systematically introduces the latest advancements of DASCs for electrocatalytic applications.Design principles of DASCs are first discussed,including atom-atom,atom-cluster,and atom-particle synergy.Then,rational modulation tactics are creatively proposed to speed up the construction of high-performance DASCs for uncovering structure-performance relationships.Moreover,advanced characterization techniques are provided to show the dynamic evolution of dual-atom sites throughout electrocatalysis.Finally,future challenges and perspectives are taken into account.This paper provides useful directions for a better understanding and design of DASCs for eco-friendly energy storage and conversion technologies.