期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
A three-dimensional co-continuous network structure polymer electrolyte with efficient ion transport channels enabling ultralong-life all solid-state lithium metal batteries
1
作者 Meng Wang Hu Zhang +2 位作者 Yewen Li Ruiping Liu Huai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期635-645,共11页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility wit... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries. 展开更多
关键词 Solid-state electrolyte Lithium-metal batteries Liquid crystalline polymer COPOLYMER 3D co-continuous structure Long cycle stability
在线阅读 下载PDF
Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling 被引量:13
2
作者 姜澜 姜艳丽 +2 位作者 喻亮 苏楠 丁友东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2783-2791,共9页
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur... The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well. 展开更多
关键词 finite element method brake disk co-continuous SiC/6061 composite thermal analysis airflow cool
在线阅读 下载PDF
Experimental study and numerical analysis on dry friction and wear performance of co-continuous SiC/Fe-40Cr against SiC/2618 Al alloy composites 被引量:1
3
作者 姜澜 姜艳丽 +2 位作者 喻亮 苏楠 丁友东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2913-2924,共12页
The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-... The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results. 展开更多
关键词 wear SiC/Al 2618 alloy SiC/Fe-40Cr co-continuous composite finite element method
在线阅读 下载PDF
Fabrication and mechanical properties of Ti_(2)AlC/TiAl composites with co-continuous network structure 被引量:9
4
作者 Li-rong REN Shui-jie QIN +1 位作者 Si-hao ZHAO Hua-qiang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期2005-2012,共8页
Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when ... Ti_(2)AlC/TiAl composites with different volume fractions were prepared by hot pressing technology,and their reinforced structural characteristics and mechanical properties were evaluated.The results showed that when the reinforced phase volume fraction of Ti_(2)AlC was 20%,three-dimensional interpenetrating network structures were formed in the composites.Above 20%,Ti_(2)AlC phase in the composites accumulated and grew to form thick skeletal networks.The microplastic deformation behavior of Ti_(2)AlC phase,such as kink band and delamination,improved the fracture toughness of the composites.Comparative analysis indicated that the uniform and small interconnecting network structures could further reinforce the composites.The bending strengths of composites prepared with 20 vol.%Ti_(2)AlC reached(900.9±45.0)MPa,which was 25.5% higher than that of TiAl matrix.In general,the co-continuous Ti_(2)AlC/TiAl composite with excellent mechanical properties can be prepared by powder metallurgy method. 展开更多
关键词 Ti_(2)AlC/TiAl composites co-continuous composites hot pressing strengthening mechanism
在线阅读 下载PDF
Synthesis of SiC/Al Co-Continuous Composite by Spontaneous Melt Infiltration 被引量:4
5
作者 Guangwei HAN and Di FENG (Central Iron & Steel Research Institute, Beijing 100081, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期466-470,共5页
Investigation has been made on the process of synthesizing SiC/Al co-continuous composite by spontaneous melt infiltration. It is found that nitrogen atmosphere is an indispensable factor for spontaneous infiltration ... Investigation has been made on the process of synthesizing SiC/Al co-continuous composite by spontaneous melt infiltration. It is found that nitrogen atmosphere is an indispensable factor for spontaneous infiltration of melt Al into SiC preform with continuous porosity. The critical temperature for spontaneous infiltration occurrence can be lowered and spontaneous infiltration rate increased by doping a small amount of Mg into the Al alloy. Adding fine SiO2 powders into the ceramic preform can play the similar role as Mg-doping by increasing wetting through the chemical reaction of 3SiO2+4AI=2Al2O3+3Si at the infiltration front. Infiltration rate can also be increased by Si-doping to lower the viscosity of the molten Al alloy. In addition, sufficient Si content in the molten Al is also indispensable to avoid the formation of Al4C in the synthesized composite. 展开更多
关键词 CO SIC Synthesis of SiC/Al co-continuous Composite by Spontaneous Melt Infiltration Al
在线阅读 下载PDF
Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti_(2)AlN_(x) MAX phase 被引量:3
6
作者 Wantong Chen Wenbo Yu +4 位作者 Pengcheng Zhang Xufeng Pi Chaosheng Ma Guozheng Ma Lin Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1406-1412,共7页
Magnesium composites reinforced by N-deficient Ti_(2)AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional(3D)co-continuous porous Ti_(2)AlN_(x)(x=0.9,1.0)preforms.The relations... Magnesium composites reinforced by N-deficient Ti_(2)AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional(3D)co-continuous porous Ti_(2)AlN_(x)(x=0.9,1.0)preforms.The relationship between their mechanical properties and micro-structure is discussed with the assessment of 2D and 3D characterization.X-ray diffraction(XRD)and scanning electron microscopy detected no impurities.The 3D reconstruction shows that the uniformly distributed pores in Ti_(2)AlN_(x) preforms are interconnected,which act as infiltra-tion tunnels for the melt Mg.The compressive yield strength and microhardness of Ti_(2)AlN_(0.9)/Mg are 353 MPa and 1.12 GPa,respectively,which are 8.55%and 6.67%lower than those of Ti_(2)AlN/Mg,respectively.The typical delamination and kink band occurred in Ti_(2)AlN_(x) under compressive and Vickers hardness(V_(H))tests.Owing to the continuous skeleton structure and strong interfacial bonding strength,the crack ini-tiated in Ti_(2)AlN_(x) was blocked by the plastic Mg matrix.This suggests the possibility of regulating the mechanical performance of Ti_(2)AlN/Mg composites by controlling the N vacancy and the hierarchical structure of Ti_(2)AlN skeleton. 展开更多
关键词 Ti_(2)AlN magnesium matrix composites co-continuous structure Nvacancy
在线阅读 下载PDF
Design of binder jet additive manufactured co-continuous ceramic-reinforced metal matrix composites 被引量:2
7
作者 Pablo D.Enrique Ehsan Marzbanrad +4 位作者 Yahya Mahmoodkhani Ali Keshavarzkermani Hashem Al Momani Ehsan Toyserkani Norman Y.Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期81-90,共10页
Ceramic-reinforced metal matrix composites(MMCs)display beneficial properties owing to their combination of ceramic and metal phases.However,the properties are highly dependent on the reinforcing phase composition,vol... Ceramic-reinforced metal matrix composites(MMCs)display beneficial properties owing to their combination of ceramic and metal phases.However,the properties are highly dependent on the reinforcing phase composition,volume fraction and morphology.Continuous fiber or network reinforcement morphologies are difficult and expensive to manufacture,and the often-used discontinuous particle or whisker reinforcement morphologies result in less effective properties.Here,we demonstrate the formation of a co-continuous ceramic-reinforced metal matrix composite using solid-state processing.Binder jet additive manufacturing(BJAM)was used to print a nickel superalloy part followed by post-processing via reactive sintering to form a continuous carbide reinforcing phase at the particle boundaries.The kinetics of reinforcement formation are investigated in order to develop a relationship between reactive sintering time,temperature and powder composition on the reinforcing phase thickness and volume fraction.To evaluate performance,the wear resistance of the reinforced BJAM alloy 625 MMC was compared to unreinforced BJAM alloy 625,demonstrating a 64%decrease in the specific wear rate under abrasive wear conditions. 展开更多
关键词 Binder jetting Reactive sintering Metal matrix composite co-continuous composite Wear resistance
原文传递
Microstructure and properties of biodegradable co-continuous(HA+β-TCP)/Zn−3Sn composite fabricated by vacuum casting-infiltration technique 被引量:2
8
作者 Ting-liang YAN Xiang WANG +1 位作者 Jin-long FAN Qi-dong NIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3075-3086,共12页
The co-continuous(HA+β-TCP)/Zn−3Sn composite was fabricated via vacuum casting-infiltration method.The microstructure,mechanical properties,corrosion behaviors,and hemolysis ratio of the composite were studied by sca... The co-continuous(HA+β-TCP)/Zn−3Sn composite was fabricated via vacuum casting-infiltration method.The microstructure,mechanical properties,corrosion behaviors,and hemolysis ratio of the composite were studied by scanning electron microscope,X-ray diffractometer,mechanical testing,electrochemical test,immersion test,and ultraviolet spectrophotometry.The results indicate that Zn−3Sn alloy infiltrated into porous HA+β-TCP scaffold,which resulted in the formation of a compact(HA+β-TCP)/Zn−3Sn co-continuous composite,without any reaction layer between the Zn−3Sn alloy and the HA+β-TCP scaffold.The compressive strength of the composite was equal to about 3/4 that of Zn−3Sn alloy bulk.The corrosion rate of composite in simulated body fluid solution was slightly higher than that of Zn−3Sn alloy bulk.The main corrosion product on the composite surface was Zn(OH)2.The hemolysis rate of the composite was lower than that of Zn–3Sn alloy bulk and exhibited superior blood compatibility. 展开更多
关键词 co-continuous(HA+β-TCP)/Zn−3Sn composite microstructure mechanical properties corrosion behavior hemolysis rate
在线阅读 下载PDF
Quantitative Investigation on Structural Evolution of Co-continuous Phase under Shear Flow 被引量:1
9
作者 Jin Yin Qing-Feng Ouyang +7 位作者 Zhao-Bo Sun Feng-Yang Wu Qian Liu Xi-Xi Zhang Ling Xu Hao Lin Gan-Ji Zhong Zhong-Ming Li 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第6期593-601,共9页
Components of co-continuous phase can form an interpenetrating network structure,which has great potential to synergistically improve the mechanical properties of the blends,and to impart the functional blends superio... Components of co-continuous phase can form an interpenetrating network structure,which has great potential to synergistically improve the mechanical properties of the blends,and to impart the functional blends superior electrical conductivity and permeability.In this work,the effects of shear rates(50-5000 s^(-1))at different temperatures on the phase morphology,phase size and lamellar crystallites of biodegradable co-continuous polybutylene terephthalate(PBAT)/polybutylene succinate(PBS)blend are quantitatively investigated.The results show that the above features of the PBAT/PBS have a strong dependence on the shear flow and thermal field.The co-continuous phase of the blend is well maintained at 130℃.Interestingly,this phase structure transforms into a“sea-island”structure at 160℃,which gradually recovers to a co-continuous phase when the shear rate increases from 1000 s^(-1) to 5000 s^(-1).The phase size decreases with the increase of shear rate both at 130℃ and 160℃ due to the refinement and deformation of phase structures caused by strong shear stress.Unexpectedly,a unique phenomenon is observed that the shear-induced lamellar crystallites are oriented perpendicular to shear direction in the range of 500-5000 s^(-1) at 130℃,while the orientation of lamellar crystallites at 160℃ is along the shear direction within the whole range of shear rates.The degree of orientation for the PBAT/PBS blend crystals increases first and then decreases at both temperatures above.In addition,the range of shear rate has reached the level in the industrial processing.Therefore,this work has important guiding significance for the regulation of the co-continuous phase structure and the performance for the blend in the practical processing. 展开更多
关键词 co-continuous phase Shear rate Phase size Crystal orientation
原文传递
Co-continuous Composite Material Design Using the Volumetric Distance Field Based on Analytic Shape Functions 被引量:1
10
作者 Huimin Han Dong-Jin Yoo Yan Liang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第1期88-96,共9页
An effective and simple design method for co-continuous composite material construction is proposed by using a hybrid methodology with triply periodic minimal surface( TPMS) cellular topology and the volumetric distan... An effective and simple design method for co-continuous composite material construction is proposed by using a hybrid methodology with triply periodic minimal surface( TPMS) cellular topology and the volumetric distance field( VDF). After generating a set of VDF-based features for the given exterior shape and desired internal core structure,a series of simple modifications in distance fields enabled us to obtain an arbitrarily-shaped complex co-continuous composite material computational model. Design results and manufactured prototypes through 3 D printing technology show that the proposed methodology has the potential to open a new paradigm for producing multifunctional next generation co-continuous composite materials which are impossible to design and manufacture using traditional CAD and CAM. 展开更多
关键词 triply periodic minimal surface (TPMS) cellular topology VOLUMETRIC distance field (VDF) co-continuous COMPOSITE material model basic feature 3D printing technology
在线阅读 下载PDF
Highly conductive wear resistant Cu/Ti3SiC2(TiC/SiC) co-continuous composites via vacuum infiltration process 被引量:9
11
作者 Dexuan YANG Yu ZHOU +2 位作者 Xingheng YAN Honglei WANG Xingui ZHOU 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第1期83-93,共11页
The MAX phase Ti3SiC2 has broad application prospects in the field of rail transit,nuclear protective materials and electrode materials due to its excellent electrical conductivity,selflubricating properties and wear ... The MAX phase Ti3SiC2 has broad application prospects in the field of rail transit,nuclear protective materials and electrode materials due to its excellent electrical conductivity,selflubricating properties and wear resistance.Cu–Ti3SiC2 co-continuous composites have superior performance due to the continuous distribution of 3 D network structures.In this paper,the Cu/Ti3SiC2(Ti C/Si C)co-continuous composites are formed via vacuum infiltration process from Cu and Ti3SiC2 porous ceramics.The co-continuous composites have significantly improved the flexural strength and conductivity of Ti3SiC2 due to the addition of Cu,with the conductivity up to 5.73×10^5 S/m,twice as high as the Ti3SiC2 porous ceramics and five times higher than graphite.The reaction between ingredients leads to an increase in the friction coefficient,while the hard reaction products(Ti Cx,Si C)lower the overall wear rate(1×10^–3 mm^3/(N·m)).Excellent electrical conductivity and wear resistance make co-continuous composites more advantageous in areas such as rail transit. 展开更多
关键词 TI3SIC2 metal–ceramic co-continuous composites vacuum infiltration high conductive
原文传递
Preparation of Polylactide/Poly(ether)urethane Blends with Excellent Electro-actuated Shape Memory via Incorporating Carbon Black and Carbon Nanotubes Hybrids Fillers 被引量:8
12
作者 Yuan Wei Rui Huang +2 位作者 Peng Dong Xiao-Dong Qi Qiang Fu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第10期1175-1186,共12页
In this work, hybrid conductive fillers of carbon black (CB) and carbon nanotubes (CNTs) were introduced into polylactide (PLA)/thermoplastic poly(ether)urethane (TPU) blend (70/30 by weight) to tune the p... In this work, hybrid conductive fillers of carbon black (CB) and carbon nanotubes (CNTs) were introduced into polylactide (PLA)/thermoplastic poly(ether)urethane (TPU) blend (70/30 by weight) to tune the phase morphology and realize rapid electrically actuated shape memory effect (SME). Particularly, the dispersion of conductive fillers, the phase morphology, the electrical conductivities and the shape memory properties of the composites containing CB or CB/CNTs were comparatively investigated. The results suggested that both CB and CNTs were selectively localized in TPU phase, and induced the morphological change from the sea-island structure to the co-continuous structure. The presence of CNTs resulted in a denser CB/CNTs network, which enhanced the continuity of TPU phase. Because the formed continuous TPU phase provided stronger recovery driving force, the PLA/TPU/CB/CNTs composites showed better shape recovery properties compared with the PLA/TPU/CB composites at the same CB content. Moreover, the CB and CNTs exerted a synergistic effect on enhancing the electrical conduetivities of the composites. As a result, the prepared composites exhibited excellent electrically actuated SME and the shape recovery speed was also greatly enhanced. This work demonstrated a promising strategy to achieve rapid electrically actuated SME via the addition of hybrid nanoparticles with self-networking ability in binary PLA/TPU blends over a much larger composition range. 展开更多
关键词 Polymer composites Shape memory polymer co-continuous structure Self-networking behavior Hybrid filler
原文传递
Fabrication of Highly Anisotropic and Interconnected Porous Scaffolds to Promote Preosteoblast Proliferation for Bone Tissue Engineering 被引量:1
13
作者 Ya-Hui Liu Wei Liu +7 位作者 Zi-Li Zheng Xin Wei Nouman Ali Shah Hao Lin Bai-Song Zhao Shi-Shu Huang Jia-Zhuang Xu Zhong-Ming Li 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第9期1191-1199,共9页
Mimicking the complex structure of natural bone remains a challenge for bone tissue scaffolds.In this study,a novel processing strategy was developed to prepare the bone-like scaffolds that are featured by highly orie... Mimicking the complex structure of natural bone remains a challenge for bone tissue scaffolds.In this study,a novel processing strategy was developed to prepare the bone-like scaffolds that are featured by highly oriented and fully interconnected pores.This type of biomimetic scaffolds was evolved from solid phase stretching of immiscible polycaprolactone(PCL)/poly(ethylene oxide)(PEO)blends with cocontinuous structure and the pore morphology was inherited from selective extraction of water soluble PEO phase.The pore anisotropy was readily tuned by varying the stretching strain without loss of interconnectivity.Significant promotion in preosteoblast proliferation,alkaline phosphatase activity and osteogenic gene expression was observed in the oriented porous scaffolds compared to the isotropic porous counterpart.The oriented architecture provided a topographical cue for aligned growth of preosteoblasts,which activated the Wnt/β-catenin signaling pathway.The proposed strategy enriches the toolbox for the scaffold design and fabrication for bone tissue engineering. 展开更多
关键词 Porous scaffold Pore anisotropy Polymer blend co-continuous structure Tissue engineering
原文传递
Dynamic Mechanical Behavior and Prediction for PP/POE Blends 被引量:1
14
作者 YING Ji-ru XIE Xiao-lin +2 位作者 ZHOU Xing-ping ZHOU Hua-min LI De-qun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第4期573-578,共6页
Polypropylene(PP)/ethylene-octene copolymer(POE) blends were prepared with a twin-screw extruder.Their dynamic mechanical behavior were systematically investigated.The results show that PP/POE blends are heterogen... Polypropylene(PP)/ethylene-octene copolymer(POE) blends were prepared with a twin-screw extruder.Their dynamic mechanical behavior were systematically investigated.The results show that PP/POE blends are heterogeneities with a partial compatible two-phase structure,the glass transition temperature of PP phases in the blends tends to shift towards high temperature with increasing the POE content,and the glass transition temperature of POE phases shifts towards the low temperature with increasing the PP content.The Kerner's dispersed phase model and co-continuous phase model can reasonably predict the visco-elasticity of PP/POE blends with different compositions.Additionally,the morphological structure of the blends can be estimated via comparing the predicted DMA behavior with the experimental data. 展开更多
关键词 PP/POE blend Dynamic mechanical behavior Dispersed phase model co-continuous phase model
在线阅读 下载PDF
Preparation of porous polyamide 6(PA6)membrane with copper oxide(CuO)nanoparticles selectively localized at the wall of the pores via reactive extrusion
15
作者 Tianqi Liang Jie Liu +1 位作者 Zhaoyang Wei Dean Shi 《Nano Materials Science》 EI CAS CSCD 2022年第2期169-177,共9页
In this study,CuO nanoparticles are pre-modified with styrene-maleic anhydride copolymers(SMAs)of different molecular weights and MAH contents.Then the pre-modified CuO nanoparticles(CuO-SMAs)are added to the PA6/SEBS... In this study,CuO nanoparticles are pre-modified with styrene-maleic anhydride copolymers(SMAs)of different molecular weights and MAH contents.Then the pre-modified CuO nanoparticles(CuO-SMAs)are added to the PA6/SEBS(Styrene Ethylene Butylene Styrene copolymer)(40/60 wt/wt)polymer blends with a co-continuous morphology.When SMA3(MAH=8 wt%,M_(n)=250000 g/mol)is used to modify CuO nanoparticles,and the grafting degree of SMA3 on the surface of CuO reaches 2.74 wt%,90.71%of the added mCuO-SMA3 nanoparticles can be located at the interface of PA6 and SEBS.A porous PA6 membrane with CuO nanoparticles located at the pore walls can be obtained after the SEBS phase is etched with xylene.The catalytic reaction velocity constant(k)for the reduction of p-nitrophenol in NaBH_(4)solutions with the PA6/mCuO-SMA3 porous membrane can reach 1.0040 min^(-1).This work provides a feasible and straightforward method for the preparation of porous polymer membranes with functional nanoparticles located at the wall of the pores. 展开更多
关键词 co-continuous CuO nanoparticles Selective distribution Porous PA6 membrane Catalytic performance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部