The product distributions of Fischer-Tropsch synthesis over Co/AC catalyst are investigated under different reaction conditions in an integral fixed bed reactor.It is found that the product distributions deviate from ...The product distributions of Fischer-Tropsch synthesis over Co/AC catalyst are investigated under different reaction conditions in an integral fixed bed reactor.It is found that the product distributions deviate from the ASF distribution.The deviation from ASF distribution is analyzed by taking the readsorption of alkenes and the following secondary reaction into consideration.It is noted that the contents of alcohol,alkene and alkane decline with the increasing carbon number,showing a slighter declining tendency of alkanes than those of alkenes and alcohols.It is also found that high temperature,space velocity,H2/CO in feed gas and low pressure are preferential for light hydrocarbons and alcohols while against the chain propagation.The effect of space velocity on the product distributions especially on the light products is not obvious.It is noticed that low temperature,space velocity,H2/CO and high pressure lead to high contents of alcohols;high temperature,H2/CO and low space velocity lead to high contents of alkanes.The effect of pressure on the amounts of alkanes is not significant;high space velocity and low temperature,pressure,H2/CO are preferential for alkenes.展开更多
The influence of La loading on Zr-Co/activated carbon (AC) catalysts has been studied for Fischer-Tropsch synthesis. The catalyst samples were characterized by XRD, TPR, CO-TPD, and temperature programmed CO hydroge...The influence of La loading on Zr-Co/activated carbon (AC) catalysts has been studied for Fischer-Tropsch synthesis. The catalyst samples were characterized by XRD, TPR, CO-TPD, and temperature programmed CO hydrogenation. The catalytic property was evaluated in a fixed bed reactor. The experimental results showed that CO conversion increased from 86.4% to 92.3% and the selectivity to methane decreased from 14.2% to 11.5% and C5+ selectivity increased from 71.0% to 74.7% when low La loading (La = 0.2wt%) was added into the Zr-Co/AC catalyst. However, high loadings of La (La = 0.3-1.0 wt%) would decrease catalyst activity as well as the C5+ selectivity and increase methane selectivity. XRD results displayed that La-modified Zr-Co/AC catalyst had little effect on the dispersion of Co catalyst. But, the results of TPR, CO-TPD, and temperature programmed CO hydrogenation techniques indicated that the extent of cobalt reduction was found to greatly influence the activity and selectivity of the catalyst. The addition of a small amount of La increased the reducibility of the Zr-Co/AC catalyst and restrained the formation of methane and improved the selectivity to long chain hydrocarbons. However, excess of La led to the decrease of the reducibility of Co catalyst thus resulted in higher methanation activity.展开更多
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC cataly...Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 ℃) following heat treatment in He at 200 ℃ (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 ℃ which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 ℃), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 ℃. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.展开更多
基金supported by the National Key R&D Program of China(2017YFB0602500)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21020200)the National Natural Science Foundation of China(22002151,22278063)。
基金supported by the National High Technology Research and Development Plan of China(863 plan)(Project No.2006AA05A111)
文摘The product distributions of Fischer-Tropsch synthesis over Co/AC catalyst are investigated under different reaction conditions in an integral fixed bed reactor.It is found that the product distributions deviate from the ASF distribution.The deviation from ASF distribution is analyzed by taking the readsorption of alkenes and the following secondary reaction into consideration.It is noted that the contents of alcohol,alkene and alkane decline with the increasing carbon number,showing a slighter declining tendency of alkanes than those of alkenes and alcohols.It is also found that high temperature,space velocity,H2/CO in feed gas and low pressure are preferential for light hydrocarbons and alcohols while against the chain propagation.The effect of space velocity on the product distributions especially on the light products is not obvious.It is noticed that low temperature,space velocity,H2/CO and high pressure lead to high contents of alcohols;high temperature,H2/CO and low space velocity lead to high contents of alkanes.The effect of pressure on the amounts of alkanes is not significant;high space velocity and low temperature,pressure,H2/CO are preferential for alkenes.
基金National Key Fundamental Research Development Plan ("973"Plan,No.2005CB221400)
文摘The influence of La loading on Zr-Co/activated carbon (AC) catalysts has been studied for Fischer-Tropsch synthesis. The catalyst samples were characterized by XRD, TPR, CO-TPD, and temperature programmed CO hydrogenation. The catalytic property was evaluated in a fixed bed reactor. The experimental results showed that CO conversion increased from 86.4% to 92.3% and the selectivity to methane decreased from 14.2% to 11.5% and C5+ selectivity increased from 71.0% to 74.7% when low La loading (La = 0.2wt%) was added into the Zr-Co/AC catalyst. However, high loadings of La (La = 0.3-1.0 wt%) would decrease catalyst activity as well as the C5+ selectivity and increase methane selectivity. XRD results displayed that La-modified Zr-Co/AC catalyst had little effect on the dispersion of Co catalyst. But, the results of TPR, CO-TPD, and temperature programmed CO hydrogenation techniques indicated that the extent of cobalt reduction was found to greatly influence the activity and selectivity of the catalyst. The addition of a small amount of La increased the reducibility of the Zr-Co/AC catalyst and restrained the formation of methane and improved the selectivity to long chain hydrocarbons. However, excess of La led to the decrease of the reducibility of Co catalyst thus resulted in higher methanation activity.
基金supported by the National Natural Science Foundation of China (No. 21207039)the Natural Science Foundation of Guangdong Province, China (Grant No. S2011010000737)+2 种基金the Doctoral Fund of Ministry of Education of China (20110172120017)the Fundamental Research Funds for the Central Universities (Grant No. 2011zm 0048)the Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences (No. Y007K1)
文摘Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 ℃) following heat treatment in He at 200 ℃ (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 ℃ which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 ℃), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 ℃. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.