Special Purpose Rice (SPR) is a technology that consists of different rice varieties that were developed by Central Luzon State University. The unique varietal characteristics of SPR are pigmented, glutinous, good-yie...Special Purpose Rice (SPR) is a technology that consists of different rice varieties that were developed by Central Luzon State University. The unique varietal characteristics of SPR are pigmented, glutinous, good-yielding varieties planted in lowland areas. This study was conducted to increase farmers’ income through employing different promotion and extension activities and enterprise development. Data were analyzed using descriptive statistics. Cost and return and benefit-cost analysis were used to determine the financial benefits of using the SPR in different production systems. Results revealed that incorporating the following parameters is critical in the sustainable adoption of the SPR. Amongst them are: ensuring that recommended production technologies are strictly followed by the farmers, ensuring the quality of seeds for planting, the presence of a market for the produce, engaging the farmers in value-adding activities like processing, capability development in entrepreneurship, and adopting clustering approach of the farmers to address economies of scale in marketing and processing. The use of SPR produced an average yield of 6.11 MT/ha and 5.04 MT/ha during the dry and wet seasons from 2021-2023, respectively, higher than the usual varieties of inbred rice. The net benefit from producing a CLS-2 variety of SPR is higher than regular rice, having an average difference of Php 22,355.53 per hectare from 2021-2023.展开更多
The integration of digital tools and effective knowledge management practices is critical for enhancing administrative efficiency and institutional continuity in higher education. This study investigates the relations...The integration of digital tools and effective knowledge management practices is critical for enhancing administrative efficiency and institutional continuity in higher education. This study investigates the relationships between knowledge modeling, institutional memory, leadership styles, technology, and administrative efficiency at the University of Cape Coast (UCC). The study sought to identify the challenges and opportunities in integrating digital tools into administrative processes and to provide actionable recommendations for improvement. A mixed-methods research design was employed, combining quantitative analysis using Partial Least Squares Structural Equation Modeling (PLS-SEM) with qualitative thematic analysis of interviews. The findings revealed key challenges, including resistance to change, fragmented knowledge repositories, and inadequate funding, alongside opportunities such as centralized knowledge systems, cost-effective open-source tools, and capacity-building initiatives. The study highlights the importance of strategic leadership, robust policies, and investments in digital infrastructure to enhance administrative practices. Policy implications include the need for clear digital transformation guidelines and leadership training to foster innovation and collaboration. Recommendations include investing in scalable digital tools, implementing comprehensive capacity-building programs, and promoting stakeholder engagement to drive successful digital integration. These insights provide a roadmap for UCC and similar institutions seeking to optimize administrative efficiency through digital transformation.展开更多
The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects ...The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects of this technology,including variety selection,planting pattern,sowing management,and field management.It also illustrated its application effectiveness through practical cases and proposed corresponding solutions to existing challenges in its promotion.This study provides theoretical support and practical reference for the widespread adoption and efficient application of this technology.展开更多
Wireless energy transmission technology through the transmitter will be converted into microwave,laser or electromagnetic field and other energy carriers to realize the transmission of space,and the receiver will be c...Wireless energy transmission technology through the transmitter will be converted into microwave,laser or electromagnetic field and other energy carriers to realize the transmission of space,and the receiver will be captured back to the energy conversion of electrical energy,the whole process can be completed without physical contact energy transfer.The core mechanism is to build the energy coupling channel of the transmitter-receiver system,and realize the spatial power transmission through electromagnetic field interaction.In the electromagnetic induction coupled transmission system,the industrial frequency alternating current is converted into direct current by rectification and filtering,and then converted into high-frequency alternating current by high-frequency inverter.This current excites the primary side transmitting winding to generate a time-varying magnetic field,and through magnetic coupling in the secondary side receiving winding inductance electromotive force,and ultimately through the high-frequency rectifier and power regulation circuit to the load power supply.The essence of the process is to establish a transceiver double-ended resonant network,through the magnetic field resonance to achieve efficient energy exchange,and its transmission characteristics follow the laws of electromagnetic induction and the circuit resonance principle of double constraints.展开更多
The publisher regrets that the article type for this publication was incorrectly labeled as a Research Article.The correct designation should be Review Article.This correction does not affect the content or conclusion...The publisher regrets that the article type for this publication was incorrectly labeled as a Research Article.The correct designation should be Review Article.This correction does not affect the content or conclusions of the article.The publisher apologizes for any inconvenience caused.展开更多
Identifying cloud IP usage scenarios is critical for cybersecurity applications,yet existing machine learning methods rely heavily on numerous features,resulting in high complexity and low interpretability.To address ...Identifying cloud IP usage scenarios is critical for cybersecurity applications,yet existing machine learning methods rely heavily on numerous features,resulting in high complexity and low interpretability.To address these issues,this paper proposes an approach to identify cloud IPs from the perspective of network attributes.We employ data mining and crowdsourced collection strategies to gather IP addresses from various usage scenarios,which including cloud IPs and non-cloud IPs.On this basis,we establish a cloud IP identification feature set that includes attributes such as Autonomous System Number(ASN)and organization information.By analyzing the differences in the properties of different IP usage scenarios in the detection results,we can find out the factors that are conducive to cloud IP identification.Experimental evaluation demonstrates that the proposed method achieves a high identification accuracy of 96.67%,surpassing the performance of traditional machine learning models such as CNN,MLP,XGBoost,KNN,SVM,and Decision Tree,whose accuracies range between 81%and 92%.Furthermore,this study reveals that latency and port information exhibit insufficient discrimination power for distinguishing cloud IP from non-cloud IP scenarios,highlighting ASN as a simpler,more interpretable,and resource-efficient criterion.To facilitate reproducible research,datasets and codes are publicly released.展开更多
Digital sculpture is the product of the cross-integration of art and technology,and its development is accompanied by the two-way interaction between technological innovation and artistic concepts.Based on this,this p...Digital sculpture is the product of the cross-integration of art and technology,and its development is accompanied by the two-way interaction between technological innovation and artistic concepts.Based on this,this paper mainly analyzes the remolding of artistic creation logic by technical tools and the expansion of technical application boundary by artistic expression,and further reveals the dynamic balance relationship between the two in symbiosis,hoping to help understand the accompanying mechanism of art and technology in the digital age.展开更多
From August 12 to 15,the 2025 China International Paper Technology Exhibition(hereina?t er referred to as“CIPTE”)was successfully held in Shanghai.Hosted by the China Paper Association,China Technical Association of...From August 12 to 15,the 2025 China International Paper Technology Exhibition(hereina?t er referred to as“CIPTE”)was successfully held in Shanghai.Hosted by the China Paper Association,China Technical Association of Paper Industry,and China National Pulp and Paper Research Institute Co.,Ltd.(below referred to as“CNPPRI”),and organized by China Pulp and Paper Magazines Publisher,this event received strong support and extensive attention from industry peers.展开更多
To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-minin...To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-mining technology system with non-pillar in mines(ETSNM)in recent years.The petal warning criterion for the stability of the surrounding rock of the roadway at the end-mining stage was obtained by studying the inverse problem of the petal theorem.A conformal mathematical model of the end-mining stage was established using the conformal mapping method,and the limit theorem of the peak point of mine pressure(LTPPMP)in the end-mining stage was demonstrated.Based on the cross-fusion of the above basic mathematical theory and the LTPPMP,a new ETSNM model was proposed,which includes no coal pillar,no dedicated retracement roadways,and fast retracement equipment(NNF).The mathematical principles of engineering technology for height control,speed limit,and roof cutting in the end-mining stage with non-pillar were revealed.The scientific and application values of the ETSNM were confirmed through engineering applications.Based on this,a new non-pillar control technology for dynamic disasters in the end-mining stage was proposed.The above research will play an active role in promoting the engineering application of ETSNM driven by mathematical theory.展开更多
Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of co...Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of conventional UAVs presents a significant challenge to comprehensive and continuous monitoring,which is crucial for maintaining the integrity of pipeline infrastructure.This review paper evaluates methods for extending UAV flight endurance,focusing on their potential application in pipeline inspection.Through an extensive literature review,this study identifies the latest advancements in UAV technology,evaluates their effectiveness,and highlights the existing gaps in achieving prolonged flight operations.Advanced techniques,including artificial intelligence(AI),machine learning(ML),and deep learning(DL),are reviewed for their roles in pipeline monitoring.Notably,DL algorithms like You Only Look Once(YOLO)are explored for autonomous flight in UAV-based inspections,real-time defect detection,such as cracks,corrosion,and leaks,enhancing reliability and accuracy.A vital aspect of this research is the proposed deployment of a hybrid drone design combining lighter-than-air(LTA)and heavier-than-air(HTA)principles,achieving a balance of endurance and maneuverability.LTA vehicles utilize buoyancy to reduce energy consumption,thereby extending flight durations.The paper details the methodology for designing LTA vehicles,presenting an analysis of design parameters that align with the requirements for effective pipeline surveillance.The ongoing work is currently at Technology Readiness Level(TRL)4,where key components have been validated in laboratory conditions,with fabrication and flight testing planned for the next phase.Initial design analysis indicates that LTA configurations could offer significant advantages in flight endurance compared to traditional UAV designs.These findings lay the groundwork for future fabrication and testing phases,which will be critical in validating and assessing the proposed approach’s real-world applicability.By outlining the technical complexities and proposing specialized techniques tailored for pipeline monitoring,this paper provides a foundational framework for advancing UAV capabilities in the oil and gas sector.Researchers and industry practitioners can use this roadmap to further develop UAV-enabled surveillance solutions,aiming to improve the reliability,efficiency,and safety of pipeline monitoring.展开更多
[Objective] This study aimed to provide references for the application of participatory monitoring and evaluation in the development of animal husbandry tech- nology. [Method] With the livelihood improvement program f...[Objective] This study aimed to provide references for the application of participatory monitoring and evaluation in the development of animal husbandry tech- nology. [Method] With the livelihood improvement program for agricultural and pas- toral area in northern Yunnan as the example, the development process of partici- patory animal husbandry was overviewed. And the monitoring and evaluation pro- cesses of participatory animal husbandry were introduced and analyzed. [Result] The monitoring and evaluation indicator system of participatory animal husbandry technol- ogy included 4 layers, namely technology, institutional system, personnel ability con- struction and effectiveness, and 11 third-level indicators, namely, technical characteristics, superiority-inferiority comparison, community and farmers, technical personnel, project personnel, economic indicators and social indicators. [Conclusion] This study provided the references for the application of participatory monitoring and evaluation in the development of animal husbandry technology.展开更多
Seafloor massive sulfide(SMS) deposits which consist of Au, Ag, Cu, and other metal elements, have been a target of commercial mining in recent decades. The demand for established and reliable commercial mining syst...Seafloor massive sulfide(SMS) deposits which consist of Au, Ag, Cu, and other metal elements, have been a target of commercial mining in recent decades. The demand for established and reliable commercial mining system for SMS deposits is increasing within the marine mining industry. The current status and progress of mining technology and equipment for SMS deposits are introduced. First, the mining technology and other recent developments of SMS deposits are comprehensively explained and analyzed. The seafloor production tools manufactured by Nautilus Minerals and similar mining tools from Japan for SMS deposits are compared and discussed in turn. Second, SMS deposit mining technology research being conducted in China is described, and a new SMS deposits mining tool is designed according to the environmental requirement. Finally, some new trends of mining technology of SMS deposits are summarized and analyzed. All of these conclusions and results have reference value and guiding significance for the research of SMS deposit mining in China.展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
The multicast technology is an integration of a series of multicast protocols and a set of corresponding control management models, authentications and billing methods. It has its unique advantages in one-to-many and ...The multicast technology is an integration of a series of multicast protocols and a set of corresponding control management models, authentications and billing methods. It has its unique advantages in one-to-many and many-to-many multimedia service applications. The network-wide multicast technology is based on a series of multicast-related protocols. This article introduces multicast protocols and technologies used in ZTE' s data products in terms of application environments. Moreover, it discusses ZTE's solution to multicast's controllability, manageability, security, operability and the added values the solution brought.展开更多
The flexibility of MIP technology to meet market demand is mainly introduced in this study. Their commercial application and technical principle are analyzed too. The MIP technology with wide feed adaptability can for...The flexibility of MIP technology to meet market demand is mainly introduced in this study. Their commercial application and technical principle are analyzed too. The MIP technology with wide feed adaptability can form a good combination with other technologies. The MIP technology has been applied extensively in China. Based on this platform, the CGP, MIP-LTG and MIP-DCR technologies have been developed, which can further improve the flexibility of MIP technology. Based on its novel reaction control technique with a sole sequential two-zone riser, the MIP users can easily switch to different operating modes between producing either more clean gasoline and propylene or diesel through changing the catalysts and varying the operating conditions. That offers MIP users with enough production flexibility and a rational production arrangement to meet the market demand. The MIP-DCR technology with less dry gas and coke yields can provide a more flexible operating mode since the catalysts to oil ratio has become an independent variable.展开更多
Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore ...Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future.展开更多
Continuous and semi-continuous mining technology has become the main trend of modern surface mines in the world. According to the deposit characteristics of coal basin in China and Chinese situation,this paper discuss...Continuous and semi-continuous mining technology has become the main trend of modern surface mines in the world. According to the deposit characteristics of coal basin in China and Chinese situation,this paper discussed the new semi-continuous technology── shovel - transfer wagon-belt conveyor and its application prospect in large surface coal mines in China.展开更多
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I...Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.展开更多
文摘Special Purpose Rice (SPR) is a technology that consists of different rice varieties that were developed by Central Luzon State University. The unique varietal characteristics of SPR are pigmented, glutinous, good-yielding varieties planted in lowland areas. This study was conducted to increase farmers’ income through employing different promotion and extension activities and enterprise development. Data were analyzed using descriptive statistics. Cost and return and benefit-cost analysis were used to determine the financial benefits of using the SPR in different production systems. Results revealed that incorporating the following parameters is critical in the sustainable adoption of the SPR. Amongst them are: ensuring that recommended production technologies are strictly followed by the farmers, ensuring the quality of seeds for planting, the presence of a market for the produce, engaging the farmers in value-adding activities like processing, capability development in entrepreneurship, and adopting clustering approach of the farmers to address economies of scale in marketing and processing. The use of SPR produced an average yield of 6.11 MT/ha and 5.04 MT/ha during the dry and wet seasons from 2021-2023, respectively, higher than the usual varieties of inbred rice. The net benefit from producing a CLS-2 variety of SPR is higher than regular rice, having an average difference of Php 22,355.53 per hectare from 2021-2023.
文摘The integration of digital tools and effective knowledge management practices is critical for enhancing administrative efficiency and institutional continuity in higher education. This study investigates the relationships between knowledge modeling, institutional memory, leadership styles, technology, and administrative efficiency at the University of Cape Coast (UCC). The study sought to identify the challenges and opportunities in integrating digital tools into administrative processes and to provide actionable recommendations for improvement. A mixed-methods research design was employed, combining quantitative analysis using Partial Least Squares Structural Equation Modeling (PLS-SEM) with qualitative thematic analysis of interviews. The findings revealed key challenges, including resistance to change, fragmented knowledge repositories, and inadequate funding, alongside opportunities such as centralized knowledge systems, cost-effective open-source tools, and capacity-building initiatives. The study highlights the importance of strategic leadership, robust policies, and investments in digital infrastructure to enhance administrative practices. Policy implications include the need for clear digital transformation guidelines and leadership training to foster innovation and collaboration. Recommendations include investing in scalable digital tools, implementing comprehensive capacity-building programs, and promoting stakeholder engagement to drive successful digital integration. These insights provide a roadmap for UCC and similar institutions seeking to optimize administrative efficiency through digital transformation.
基金Supported by Special Project for the Construction of the National Modern Agricultural Industry Technology System(CARS-04-CES16).
文摘The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects of this technology,including variety selection,planting pattern,sowing management,and field management.It also illustrated its application effectiveness through practical cases and proposed corresponding solutions to existing challenges in its promotion.This study provides theoretical support and practical reference for the widespread adoption and efficient application of this technology.
文摘Wireless energy transmission technology through the transmitter will be converted into microwave,laser or electromagnetic field and other energy carriers to realize the transmission of space,and the receiver will be captured back to the energy conversion of electrical energy,the whole process can be completed without physical contact energy transfer.The core mechanism is to build the energy coupling channel of the transmitter-receiver system,and realize the spatial power transmission through electromagnetic field interaction.In the electromagnetic induction coupled transmission system,the industrial frequency alternating current is converted into direct current by rectification and filtering,and then converted into high-frequency alternating current by high-frequency inverter.This current excites the primary side transmitting winding to generate a time-varying magnetic field,and through magnetic coupling in the secondary side receiving winding inductance electromotive force,and ultimately through the high-frequency rectifier and power regulation circuit to the load power supply.The essence of the process is to establish a transceiver double-ended resonant network,through the magnetic field resonance to achieve efficient energy exchange,and its transmission characteristics follow the laws of electromagnetic induction and the circuit resonance principle of double constraints.
文摘The publisher regrets that the article type for this publication was incorrectly labeled as a Research Article.The correct designation should be Review Article.This correction does not affect the content or conclusions of the article.The publisher apologizes for any inconvenience caused.
基金funded by the Henan Province Science Foundation for Youths No.222300420058Henan Province Science and Technology Research Project No.232102321064+1 种基金Teacher Education Curriculum Reform Research Priority ProjectNo.2023-JSJYZD-011Key Project of Henan Provincial Higher Education Teaching Reform(Graduate Education)No.2023SJGLX062Y.
文摘Identifying cloud IP usage scenarios is critical for cybersecurity applications,yet existing machine learning methods rely heavily on numerous features,resulting in high complexity and low interpretability.To address these issues,this paper proposes an approach to identify cloud IPs from the perspective of network attributes.We employ data mining and crowdsourced collection strategies to gather IP addresses from various usage scenarios,which including cloud IPs and non-cloud IPs.On this basis,we establish a cloud IP identification feature set that includes attributes such as Autonomous System Number(ASN)and organization information.By analyzing the differences in the properties of different IP usage scenarios in the detection results,we can find out the factors that are conducive to cloud IP identification.Experimental evaluation demonstrates that the proposed method achieves a high identification accuracy of 96.67%,surpassing the performance of traditional machine learning models such as CNN,MLP,XGBoost,KNN,SVM,and Decision Tree,whose accuracies range between 81%and 92%.Furthermore,this study reveals that latency and port information exhibit insufficient discrimination power for distinguishing cloud IP from non-cloud IP scenarios,highlighting ASN as a simpler,more interpretable,and resource-efficient criterion.To facilitate reproducible research,datasets and codes are publicly released.
文摘Digital sculpture is the product of the cross-integration of art and technology,and its development is accompanied by the two-way interaction between technological innovation and artistic concepts.Based on this,this paper mainly analyzes the remolding of artistic creation logic by technical tools and the expansion of technical application boundary by artistic expression,and further reveals the dynamic balance relationship between the two in symbiosis,hoping to help understand the accompanying mechanism of art and technology in the digital age.
文摘From August 12 to 15,the 2025 China International Paper Technology Exhibition(hereina?t er referred to as“CIPTE”)was successfully held in Shanghai.Hosted by the China Paper Association,China Technical Association of Paper Industry,and China National Pulp and Paper Research Institute Co.,Ltd.(below referred to as“CNPPRI”),and organized by China Pulp and Paper Magazines Publisher,this event received strong support and extensive attention from industry peers.
基金supported by the National Natural Science Foundation of China(No.12071047,51774289,52074291).
文摘To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-mining technology system with non-pillar in mines(ETSNM)in recent years.The petal warning criterion for the stability of the surrounding rock of the roadway at the end-mining stage was obtained by studying the inverse problem of the petal theorem.A conformal mathematical model of the end-mining stage was established using the conformal mapping method,and the limit theorem of the peak point of mine pressure(LTPPMP)in the end-mining stage was demonstrated.Based on the cross-fusion of the above basic mathematical theory and the LTPPMP,a new ETSNM model was proposed,which includes no coal pillar,no dedicated retracement roadways,and fast retracement equipment(NNF).The mathematical principles of engineering technology for height control,speed limit,and roof cutting in the end-mining stage with non-pillar were revealed.The scientific and application values of the ETSNM were confirmed through engineering applications.Based on this,a new non-pillar control technology for dynamic disasters in the end-mining stage was proposed.The above research will play an active role in promoting the engineering application of ETSNM driven by mathematical theory.
基金supported by the Yayasan Universiti Teknologi PETRONAS(YUTP)under Cost Center 015LC0-485.
文摘Unmanned aerial vehicles(UAVs)technology is rapidly advancing,offering innovative solutions for various industries,including the critical task of oil and gas pipeline surveillance.However,the limited flight time of conventional UAVs presents a significant challenge to comprehensive and continuous monitoring,which is crucial for maintaining the integrity of pipeline infrastructure.This review paper evaluates methods for extending UAV flight endurance,focusing on their potential application in pipeline inspection.Through an extensive literature review,this study identifies the latest advancements in UAV technology,evaluates their effectiveness,and highlights the existing gaps in achieving prolonged flight operations.Advanced techniques,including artificial intelligence(AI),machine learning(ML),and deep learning(DL),are reviewed for their roles in pipeline monitoring.Notably,DL algorithms like You Only Look Once(YOLO)are explored for autonomous flight in UAV-based inspections,real-time defect detection,such as cracks,corrosion,and leaks,enhancing reliability and accuracy.A vital aspect of this research is the proposed deployment of a hybrid drone design combining lighter-than-air(LTA)and heavier-than-air(HTA)principles,achieving a balance of endurance and maneuverability.LTA vehicles utilize buoyancy to reduce energy consumption,thereby extending flight durations.The paper details the methodology for designing LTA vehicles,presenting an analysis of design parameters that align with the requirements for effective pipeline surveillance.The ongoing work is currently at Technology Readiness Level(TRL)4,where key components have been validated in laboratory conditions,with fabrication and flight testing planned for the next phase.Initial design analysis indicates that LTA configurations could offer significant advantages in flight endurance compared to traditional UAV designs.These findings lay the groundwork for future fabrication and testing phases,which will be critical in validating and assessing the proposed approach’s real-world applicability.By outlining the technical complexities and proposing specialized techniques tailored for pipeline monitoring,this paper provides a foundational framework for advancing UAV capabilities in the oil and gas sector.Researchers and industry practitioners can use this roadmap to further develop UAV-enabled surveillance solutions,aiming to improve the reliability,efficiency,and safety of pipeline monitoring.
基金Supported by the Canadian International Development Research Center(IDRC)~~
文摘[Objective] This study aimed to provide references for the application of participatory monitoring and evaluation in the development of animal husbandry tech- nology. [Method] With the livelihood improvement program for agricultural and pas- toral area in northern Yunnan as the example, the development process of partici- patory animal husbandry was overviewed. And the monitoring and evaluation pro- cesses of participatory animal husbandry were introduced and analyzed. [Result] The monitoring and evaluation indicator system of participatory animal husbandry technol- ogy included 4 layers, namely technology, institutional system, personnel ability con- struction and effectiveness, and 11 third-level indicators, namely, technical characteristics, superiority-inferiority comparison, community and farmers, technical personnel, project personnel, economic indicators and social indicators. [Conclusion] This study provided the references for the application of participatory monitoring and evaluation in the development of animal husbandry technology.
基金Supported by National Natural Science Foundation of China(Grant No.51074179)National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA091291)Basic Research Foundation of Shenzhen Science and Technology Innovation,China(Grant No.JCYJ20150929102555935)
文摘Seafloor massive sulfide(SMS) deposits which consist of Au, Ag, Cu, and other metal elements, have been a target of commercial mining in recent decades. The demand for established and reliable commercial mining system for SMS deposits is increasing within the marine mining industry. The current status and progress of mining technology and equipment for SMS deposits are introduced. First, the mining technology and other recent developments of SMS deposits are comprehensively explained and analyzed. The seafloor production tools manufactured by Nautilus Minerals and similar mining tools from Japan for SMS deposits are compared and discussed in turn. Second, SMS deposit mining technology research being conducted in China is described, and a new SMS deposits mining tool is designed according to the environmental requirement. Finally, some new trends of mining technology of SMS deposits are summarized and analyzed. All of these conclusions and results have reference value and guiding significance for the research of SMS deposit mining in China.
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
文摘The multicast technology is an integration of a series of multicast protocols and a set of corresponding control management models, authentications and billing methods. It has its unique advantages in one-to-many and many-to-many multimedia service applications. The network-wide multicast technology is based on a series of multicast-related protocols. This article introduces multicast protocols and technologies used in ZTE' s data products in terms of application environments. Moreover, it discusses ZTE's solution to multicast's controllability, manageability, security, operability and the added values the solution brought.
文摘The flexibility of MIP technology to meet market demand is mainly introduced in this study. Their commercial application and technical principle are analyzed too. The MIP technology with wide feed adaptability can form a good combination with other technologies. The MIP technology has been applied extensively in China. Based on this platform, the CGP, MIP-LTG and MIP-DCR technologies have been developed, which can further improve the flexibility of MIP technology. Based on its novel reaction control technique with a sole sequential two-zone riser, the MIP users can easily switch to different operating modes between producing either more clean gasoline and propylene or diesel through changing the catalysts and varying the operating conditions. That offers MIP users with enough production flexibility and a rational production arrangement to meet the market demand. The MIP-DCR technology with less dry gas and coke yields can provide a more flexible operating mode since the catalysts to oil ratio has become an independent variable.
基金supported by the National Science and Technology Support Program of China(No.2012BAC11B07)the Jiangxi Science and Technology Innovation Base Plan(No.20212BCD42017)。
文摘Under the background of increasingly scarce ore worldwide and increasingly fierce market competition,developing the mining industry could be strongly restricted.Intelligent ore sorting equipment not only improves ore use and enhances the economic benefits of enterprises but also increases the ore grade and lessens the grinding cost and tailings production.However,long-term research on intelligent ore sorting equipment found that the factors affecting sorting efficiency mainly include ore information identification technology,equipment sorting actuator,and information processing algorithm.The high precision,strong anti-interference capability,and high speed of these factors guarantee the separation efficiency of intelligent ore sorting equipment.Color ore sorter,X-ray ore transmission sorter,dual-energy X-ray transmission ore sorter,X-ray fluorescence ore sorter,and near-infrared ore sorter have been successfully developed in accordance with the different characteristics of minerals while ensuring the accuracy of equipment sorting and improving the equipment sorting efficiency.With the continuous improvement of mine automation level,the application of online element rapid analysis technology with high speed,high precision,and strong anti-interference capability in intelligent ore sorting equipment will become an inevitable trend of equipment development in the future.Laser-induced breakdown spectroscopy,transientγneutron activation analysis,online Fourier transform infrared spectroscopy,and nuclear magnetic resonance techniques will promote the development of ore sorting equipment.In addition,the improvement and joint application of additional high-speed and high-precision operation algorithms(such as peak area,principal component analysis,artificial neural network,partial least squares,and Monte Carlo library least squares methods)are an essential part of the development of intelligent ore sorting equipment in the future.
文摘Continuous and semi-continuous mining technology has become the main trend of modern surface mines in the world. According to the deposit characteristics of coal basin in China and Chinese situation,this paper discussed the new semi-continuous technology── shovel - transfer wagon-belt conveyor and its application prospect in large surface coal mines in China.
基金National Natural Science Foundation of China(No. 60474021)
文摘Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.