By doping with Mg atoms,the bandgap of Mg-doped NiO thin films can be adjusted larger.By using NiO and MgO as sputtering targets,Mg-doped NiO thin films were deposited using radio-frequency magnetron co-sputtering met...By doping with Mg atoms,the bandgap of Mg-doped NiO thin films can be adjusted larger.By using NiO and MgO as sputtering targets,Mg-doped NiO thin films were deposited using radio-frequency magnetron co-sputtering method in pure argon and pure oxygen gas,respectively.The crystal structure,morphological characteristics,composition and optical properties of the obtained films were compared by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and ultraviolet(UV)-visible spectrophotometer.The properties of the thin films deposited in different sputtering gases are quite different.For the films deposited in pure argon gas,it is a polycrystalline thin film with(200)preferred orientation,while the film deposited in pure oxygen has no preferred orientation.The grain size,molar ratio of Mg to Ni atoms and optical bandgap are larger for the films deposited in pure argon gas than those deposited in oxygen gas.展开更多
Microstructure of GaAs/SiO 2 nanogranular thin films fabricated by radio frequency magnetron co sputtering technique and postannealing are investigated via atomic force microscope,X ray diffraction,and Rutherford b...Microstructure of GaAs/SiO 2 nanogranular thin films fabricated by radio frequency magnetron co sputtering technique and postannealing are investigated via atomic force microscope,X ray diffraction,and Rutherford backscattering spectroscopy.The results show that GaAs nanocrystals with average diameters from 1 5nm to 3 2nm (depending on the annealing temperature) are uniformly dispersed in the SiO 2 matrices.GaAs and SiO 2 are found in normal stoichiometry in the films.The nonlinear optical refraction and nonlinear optical absorption are studied by Z scan technique using a single Gaussian beam of pulse laser.The third order nonlinear optical refractive index and nonlinear absorption coefficient are enhanced due to the quantum confinement effects and estimated to be 4×10 -12 m 2/W and 2×10 -5 m/W respectively in nonresonant condition,while 2×10 -11 m 2/W and -1×10 -4 m/W respectively in quasi resonant condition.展开更多
基金supported by the Jilin Provincial Scientific and Technological Development Program(No.20220101036JC)。
文摘By doping with Mg atoms,the bandgap of Mg-doped NiO thin films can be adjusted larger.By using NiO and MgO as sputtering targets,Mg-doped NiO thin films were deposited using radio-frequency magnetron co-sputtering method in pure argon and pure oxygen gas,respectively.The crystal structure,morphological characteristics,composition and optical properties of the obtained films were compared by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and ultraviolet(UV)-visible spectrophotometer.The properties of the thin films deposited in different sputtering gases are quite different.For the films deposited in pure argon gas,it is a polycrystalline thin film with(200)preferred orientation,while the film deposited in pure oxygen has no preferred orientation.The grain size,molar ratio of Mg to Ni atoms and optical bandgap are larger for the films deposited in pure argon gas than those deposited in oxygen gas.
文摘Microstructure of GaAs/SiO 2 nanogranular thin films fabricated by radio frequency magnetron co sputtering technique and postannealing are investigated via atomic force microscope,X ray diffraction,and Rutherford backscattering spectroscopy.The results show that GaAs nanocrystals with average diameters from 1 5nm to 3 2nm (depending on the annealing temperature) are uniformly dispersed in the SiO 2 matrices.GaAs and SiO 2 are found in normal stoichiometry in the films.The nonlinear optical refraction and nonlinear optical absorption are studied by Z scan technique using a single Gaussian beam of pulse laser.The third order nonlinear optical refractive index and nonlinear absorption coefficient are enhanced due to the quantum confinement effects and estimated to be 4×10 -12 m 2/W and 2×10 -5 m/W respectively in nonresonant condition,while 2×10 -11 m 2/W and -1×10 -4 m/W respectively in quasi resonant condition.