An extraordinary earthquake swarm occurred at Rushan on the Jiaodong Peninsula from October 1, 2013, onwards, and more than 12,000 aftershocks had been detected by December 31, 2015. All the activities of the whole sw...An extraordinary earthquake swarm occurred at Rushan on the Jiaodong Peninsula from October 1, 2013, onwards, and more than 12,000 aftershocks had been detected by December 31, 2015. All the activities of the whole swarm were recorded at the nearest station, RSH, which is located about 12 km from the epicenter. We examine the statistical characteristics of the Rushan swarm in this paper using RSH station data to assess the arrival time difference, ts p, of Pg and Sg phases. A temporary network comprising 18 seismometers was set up on May 6, 2014, within the area of the epicenter; based on the data from this network and use of the double difference method, we determine precise hypocenter locations. As the distribution of relocated sources reveals migration of seismic activity, we applied the mean-shift cluster method to perform clustering analysis on relocated catalogs. The results of this study show that there were at least 16 clusters of seismic activities between May 6, 2014, and June 30, 2014, and that each was characterized by a hypocenter spreading process. We estimated the hydraulic diffusivity, D, of each cluster using envelope curve fitting; the results show that D values range between 1.2 and 3.5 m2/d and that approximate values for clusters on the edge of the source area are lower than those within the central area. We utilize an epidemic-type aftershock sequence (ETAS) model to separate external triggered events from self-excited aftershocks within the Rushan swarm. The estimated parameters for this model suggest that α = 1.156, equiva- lent to sequences induced by fluid-injection, and that the forcing rate (μ) implies just 0.15 events per day. These estimates indicate that around 3% of the events within the swarm were externally triggered. The fact that variation in μ is synchronous with swarm activity implies that pulses in fluid pressure likely drove this series of earthquakes.展开更多
In this paper, an artificial neural network model was built to predict the Chemical Oxygen Demand (CODMn) measured by permanganate index in Songhua River. To enhance the prediction accuracy, principal factors were d...In this paper, an artificial neural network model was built to predict the Chemical Oxygen Demand (CODMn) measured by permanganate index in Songhua River. To enhance the prediction accuracy, principal factors were determined through the analysis of the weight relation between influencing factors and forecasting object using cluster analysis method, which optimized the topological structure of the prediction model input items of the artificial neural network. It was shown that application of the principal factors in water quality prediction model can improve its forecasting skill significantly through the comparison between results of prediction by artificial neural network and the measurements of the CODMn. This methodology is also applicable to various water quality prediction targets of other water bodies and it is valuable for theoretical study and practical application.展开更多
基金supported financially by the Science and Technology Development Plan Project of Shandong Province(2014GSF120007)Shandong Earthquake Agency,China Earthquake Administration(SD1250501)
文摘An extraordinary earthquake swarm occurred at Rushan on the Jiaodong Peninsula from October 1, 2013, onwards, and more than 12,000 aftershocks had been detected by December 31, 2015. All the activities of the whole swarm were recorded at the nearest station, RSH, which is located about 12 km from the epicenter. We examine the statistical characteristics of the Rushan swarm in this paper using RSH station data to assess the arrival time difference, ts p, of Pg and Sg phases. A temporary network comprising 18 seismometers was set up on May 6, 2014, within the area of the epicenter; based on the data from this network and use of the double difference method, we determine precise hypocenter locations. As the distribution of relocated sources reveals migration of seismic activity, we applied the mean-shift cluster method to perform clustering analysis on relocated catalogs. The results of this study show that there were at least 16 clusters of seismic activities between May 6, 2014, and June 30, 2014, and that each was characterized by a hypocenter spreading process. We estimated the hydraulic diffusivity, D, of each cluster using envelope curve fitting; the results show that D values range between 1.2 and 3.5 m2/d and that approximate values for clusters on the edge of the source area are lower than those within the central area. We utilize an epidemic-type aftershock sequence (ETAS) model to separate external triggered events from self-excited aftershocks within the Rushan swarm. The estimated parameters for this model suggest that α = 1.156, equiva- lent to sequences induced by fluid-injection, and that the forcing rate (μ) implies just 0.15 events per day. These estimates indicate that around 3% of the events within the swarm were externally triggered. The fact that variation in μ is synchronous with swarm activity implies that pulses in fluid pressure likely drove this series of earthquakes.
文摘In this paper, an artificial neural network model was built to predict the Chemical Oxygen Demand (CODMn) measured by permanganate index in Songhua River. To enhance the prediction accuracy, principal factors were determined through the analysis of the weight relation between influencing factors and forecasting object using cluster analysis method, which optimized the topological structure of the prediction model input items of the artificial neural network. It was shown that application of the principal factors in water quality prediction model can improve its forecasting skill significantly through the comparison between results of prediction by artificial neural network and the measurements of the CODMn. This methodology is also applicable to various water quality prediction targets of other water bodies and it is valuable for theoretical study and practical application.