The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates ...The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.展开更多
Traditional spatial clustering methods have the disadvantage of "hardware division", and can not describe the physical characteristics of spatial entity effectively. In view of the above, this paper sets forth a gen...Traditional spatial clustering methods have the disadvantage of "hardware division", and can not describe the physical characteristics of spatial entity effectively. In view of the above, this paper sets forth a general multi-dimensional cloud model, which describes the characteristics of spatial objects more reasonably according to the idea of non-homogeneous and non-symmetry. Based on infrastructures' classification and demarcation in Zhanjiang, a detailed interpretation of clustering results is made from the spatial distribution of membership degree of clustering, the comparative study of Fuzzy C-means and a coupled analysis of residential land prices. General multi-dimensional cloud model reflects the integrated char- acteristics of spatial objects better, reveals the spatial distribution of potential information, and realizes spatial division more accurately in complex circumstances. However, due to the complexity of spatial interactions between geographical entities, the generation of cloud model is a specific and challenging task.展开更多
Smart city is the development of digital city; as its main supporting technology, the digital city geo-spatial framework has to be upgraded to the temporal-spatial information infrastructure (TSII). first, this paper ...Smart city is the development of digital city; as its main supporting technology, the digital city geo-spatial framework has to be upgraded to the temporal-spatial information infrastructure (TSII). first, this paper proposes the concept and basic framework of smart city and defines the concept of TSII - processes, integration, mining analysis, and share time-stamps geographic data - and the related policy, regulations and standards, technology, facilities, mechanism, and human resources. The framework has four components: the benchmark of time and space, temporal-spatial big data, the cloud service platform and the related supporting environment. Second, the temporal-spatial big data and cloud service platform are elaborated. finally, an application of TSII constructed by the Xicheng District Planning Bureau in Beijing is introduced, which provides a useful reference for the construction of smart city.展开更多
Digital mine is the inevitable outcome of the information processing, and is also a complicated system engineering. Firstly, for the 3D visualization application of the digital mine, the ground and underground integra...Digital mine is the inevitable outcome of the information processing, and is also a complicated system engineering. Firstly, for the 3D visualization application of the digital mine, the ground and underground integrative visualization framework model was proposed based on the mine entity database. So, the visualization problem was availably resolved, as well as the professional analytical ability was improved. Secondly, aiming at the irregularities, non-uniformity, dynamics of mine entities, mix modeling method based on the entity character was put forward, in which 3D expression of mine entities was realized. Lastly, the 3D visualization project for a copper mine was experimentally studied. Satisfactory results were acquired, and the rationality of visualization model and feasibility of 3D modeling were validated.展开更多
As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Au...As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Automatic Identification System(AIS).An increase in both vessels fitted with AIS transponders and satellite and terrestrial AIS receivers has resulted in a significant increase in AIS messages received globally.This resultant rich spatial and temporal data source related to vessel activity provides analysts with the ability to perform enhanced vessel movement analytics,of which a pertinent example is the improvement of vessel location predictions.In this paper,we propose a novel strategy for predicting future locations of vessels making use of historic AIS data.The proposed method uses a Linear Regression Model(LRM)and utilizes historic AIS movement data in the form of a-priori generated spatial maps of the course over ground(LRMAC).The LRMAC is an accurate low complexity first-order method that is easy to implement operationally and shows promising results in areas where there is a consistency in the directionality of historic vessel movement.In areas where the historic directionality of vessel movement is diverse,such as areas close to harbors and ports,the LRMAC defaults to the LRM.The proposed LRMAC method is compared to the Single-Point Neighbor Search(SPNS),which is also a first-order method and has a similar level of computational complexity,and for the use case of predicting tanker and cargo vessel trajectories up to 8 hours into the future,the LRMAC showed improved results both in terms of prediction accuracy and execution time.展开更多
文摘The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.
基金National Natural Science Foundation of China, N0.40971102 Knowledge Innovation Project of the Chinese Academy of Sciences, No. KZCX2-YW-322 Special Grant for Postgraduates' Scientific Innovation and So- cial Practice in 2008
文摘Traditional spatial clustering methods have the disadvantage of "hardware division", and can not describe the physical characteristics of spatial entity effectively. In view of the above, this paper sets forth a general multi-dimensional cloud model, which describes the characteristics of spatial objects more reasonably according to the idea of non-homogeneous and non-symmetry. Based on infrastructures' classification and demarcation in Zhanjiang, a detailed interpretation of clustering results is made from the spatial distribution of membership degree of clustering, the comparative study of Fuzzy C-means and a coupled analysis of residential land prices. General multi-dimensional cloud model reflects the integrated char- acteristics of spatial objects better, reveals the spatial distribution of potential information, and realizes spatial division more accurately in complex circumstances. However, due to the complexity of spatial interactions between geographical entities, the generation of cloud model is a specific and challenging task.
文摘Smart city is the development of digital city; as its main supporting technology, the digital city geo-spatial framework has to be upgraded to the temporal-spatial information infrastructure (TSII). first, this paper proposes the concept and basic framework of smart city and defines the concept of TSII - processes, integration, mining analysis, and share time-stamps geographic data - and the related policy, regulations and standards, technology, facilities, mechanism, and human resources. The framework has four components: the benchmark of time and space, temporal-spatial big data, the cloud service platform and the related supporting environment. Second, the temporal-spatial big data and cloud service platform are elaborated. finally, an application of TSII constructed by the Xicheng District Planning Bureau in Beijing is introduced, which provides a useful reference for the construction of smart city.
基金Project(41061043)supported by the National Natural Science Foundation of China
文摘Digital mine is the inevitable outcome of the information processing, and is also a complicated system engineering. Firstly, for the 3D visualization application of the digital mine, the ground and underground integrative visualization framework model was proposed based on the mine entity database. So, the visualization problem was availably resolved, as well as the professional analytical ability was improved. Secondly, aiming at the irregularities, non-uniformity, dynamics of mine entities, mix modeling method based on the entity character was put forward, in which 3D expression of mine entities was realized. Lastly, the 3D visualization project for a copper mine was experimentally studied. Satisfactory results were acquired, and the rationality of visualization model and feasibility of 3D modeling were validated.
文摘As maritime activities increase globally,there is a greater dependency on technology in monitoring,control,and surveillance of vessel activity.One of the most prominent systems for monitoring vessel activity is the Automatic Identification System(AIS).An increase in both vessels fitted with AIS transponders and satellite and terrestrial AIS receivers has resulted in a significant increase in AIS messages received globally.This resultant rich spatial and temporal data source related to vessel activity provides analysts with the ability to perform enhanced vessel movement analytics,of which a pertinent example is the improvement of vessel location predictions.In this paper,we propose a novel strategy for predicting future locations of vessels making use of historic AIS data.The proposed method uses a Linear Regression Model(LRM)and utilizes historic AIS movement data in the form of a-priori generated spatial maps of the course over ground(LRMAC).The LRMAC is an accurate low complexity first-order method that is easy to implement operationally and shows promising results in areas where there is a consistency in the directionality of historic vessel movement.In areas where the historic directionality of vessel movement is diverse,such as areas close to harbors and ports,the LRMAC defaults to the LRM.The proposed LRMAC method is compared to the Single-Point Neighbor Search(SPNS),which is also a first-order method and has a similar level of computational complexity,and for the use case of predicting tanker and cargo vessel trajectories up to 8 hours into the future,the LRMAC showed improved results both in terms of prediction accuracy and execution time.