期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Impact of Different Cloud Microphysics Parameterization Schemes on Typhoon Intensity and Structure 被引量:2
1
作者 WANG Chen-xi YING Ming 《Journal of Tropical Meteorology》 SCIE 2021年第2期109-124,共16页
The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model ver... The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model version 3.4 with eight cloud microphysics parameterization schemes.Results indicate that the uncertainty of cloud microphysics schemes results in typhoon forecast uncertainties,which increase with forecast time.Typhoon forecast uncertainty primarily affects intensity predictions,with significant differences in predicted typhoon intensity using various cloud microphysics schemes.Typhoon forecast uncertainty also affects the predicted typhoon structure.Greater typhoon intensity is accompanied by smaller vortex width,tighter vortex structure,stronger wind in the middle and lower troposphere,greater height of the strong wind region,smaller thickness of the eyewall and the outward extension of the eyewall,and a warmer warm core at upper levels of the eye.The differences among the various cloud microphysics schemes lead to different amounts and distributions of water vapor and hydrometeors in clouds.Different hydrometeors have different vertical distributions.In the radial direction,the maxima for the various hydrometeors forecast by a single cloud microphysics scheme are collocated with each other and with the center of maximum precipitation.When the hydrometeor concentration is high and hydrometeors exist at lower altitudes,more precipitation often occurs.Both the vertical and horizontal winds are the strongest at the location of maximum precipitation.Results also indicate that typhoon intensities forecast by cloud microphysics schemes containing graupel processes are noticeably greater than those forecast by schemes without graupel processes.Among the eight cloud microphysics schemes investigated,typhoon intensity forecasts using the WRF Single-Moment 6-class and Thompson schemes are the most accurate. 展开更多
关键词 cloud microphysics scheme TYPHOON INTENSITY STRUCTURE UNCERTAINTY
在线阅读 下载PDF
Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL) 被引量:2
2
作者 史湘军 王斌 +1 位作者 Xiaohong LIU Minghuai WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期868-883,共16页
A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LA... A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable rep- resentation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. ~rthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account. 展开更多
关键词 two-moment cloud microphysics scheme atmospheric model
在线阅读 下载PDF
Parameterization and Explicit Modeling of Cloud Microphysics:Approaches, Challenges, and Future Directions
3
作者 Yangang LIU Man-Kong YAU +2 位作者 Shin-ichiro SHIMA Chunsong LU Sisi CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期747-790,共44页
Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resoluti... Cloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models(GCMs)but also in various higher-resolution limited-area models such as cloud-resolving models(CRMs)and large-eddy simulation(LES)models.Instead of giving a comprehensive review of existing microphysical parameterizations that have been developed over the years,this study concentrates purposely on several topics that we believe are understudied but hold great potential for further advancing bulk microphysics parameterizations:multi-moment bulk microphysics parameterizations and the role of the spectral shape of hydrometeor size distributions;discrete vs“continuous”representation of hydrometeor types;turbulence-microphysics interactions including turbulent entrainment-mixing processes and stochastic condensation;theoretical foundations for the mathematical expressions used to describe hydrometeor size distributions and hydrometeor morphology;and approaches for developing bulk microphysics parameterizations.Also presented are the spectral bin scheme and particle-based scheme(especially,super-droplet method)for representing explicit microphysics.Their advantages and disadvantages are elucidated for constructing cloud models with detailed microphysics that are essential to developing processes understanding and bulk microphysics parameterizations.Particle-resolved direct numerical simulation(DNS)models are described as an emerging technique to investigate turbulence-microphysics interactions at the most fundamental level by tracking individual particles and resolving the smallest turbulent eddies in turbulent clouds.Outstanding challenges and future research directions are explored as well. 展开更多
关键词 cloud microphysics PARAMETERIZATIONS systems theory bin microphysics particle-based microphysics particleresolved direct numerical simulations
在线阅读 下载PDF
Aircraft Observed Cloud Microphysics Variation Related to a Cloud Trough during Stratiform Cloud Seeding over Central China
4
作者 Chong PENG Can SONG +2 位作者 Yimei HUANG Yue TAO Xinxin MA 《Journal of Meteorological Research》 2025年第4期1039-1051,共13页
Previous satellite observations have identified the appearance of“cloud trough”(or“cloud trench”),with cloud tops visually collapsed following airborne cloud seeding operation,demonstrating the effect of weather m... Previous satellite observations have identified the appearance of“cloud trough”(or“cloud trench”),with cloud tops visually collapsed following airborne cloud seeding operation,demonstrating the effect of weather modification.However,refined observations of troughed clouds and associated microphysical processes are still notably scarce,especially those obtained via in-situ aircraft measurements.In this study,variations in cloud microphysics associated with and without troughed clouds along an airborne stratiform cloud seeding path over central China on 15 December 2019 are analyzed and compared based on aircraft measurements,ground-based radar observations,and FY-4A satellite imagery.The results are as follows.(1)The troughed clouds were mainly formed to the northeast of the flight path and were observed only in some parts of the seeded stratiform clouds.The seeding tracks became visible starting from 60 min after seeding and persisted for approximately 3 h,covering a maximum width of 30–40 km in FY-4A imagery.Radar echo enhancements can be observed by a ground-based radar at some parts of the seeding tracks.(2)The troughed clouds were observed only when the ambient air temperature(T)was≤-7℃,a condition favoring high nucleation efficiency of silver iodide(Ag I)aerosols,whereas no cloud troughs formed at higher temperatures.(3)The troughed clouds with strong radar echoes(i.e.,large precipitation)corresponded to regions with high values(>0.1 g m^(-3))of supercooled water content after cloud seeding,which facilitated the growth of precipitation particles.(4)Within the troughed clouds,the cloud optical thickness and cloud top height decreased,while the effective radii of cloud particles increased by nearly 10μm.These results provide valuable guidance for optimizing cold cloud seeding conditions in artificial rainfall enhancement.Meanwhile,the presence of high supercooled water content,particularly the threshold of supercooled water content,is a critical factor for strong precipitation,which necessitates further studies. 展开更多
关键词 cloud trough cloud seeding track cloud microphysics artificial rain enhancement airborne observation
原文传递
Impacts of observation-based cloud droplet size distributions on the simulation of warm stratiform precipitation using a double-moment microphysics scheme
5
作者 Ryohei Misumi Akihiro Hashimoto 《Atmospheric and Oceanic Science Letters》 2025年第5期1-7,共7页
A double-moment cloud microphysics scheme requires an assumption for cloud droplet size distributions(DSDs).However,since observations of cloud DSDs are limited,default values for shape parameters and cloud condensati... A double-moment cloud microphysics scheme requires an assumption for cloud droplet size distributions(DSDs).However,since observations of cloud DSDs are limited,default values for shape parameters and cloud condensation nuclei activation parameters are often used in numerical simulations.In this study,the effects of cloud DSDs on numerical simulations of warm stratiform precipitation around Tokyo are investigated using the Japan Meteorological Agency's non-hydrostatic model,which incorporates a double-moment cloud microphysics scheme.Simulations using the default cloud DSD showed higher cloud droplet number concentrations and lower radar reflectivity than observed data,suggesting that the default cloud DSD is too narrow.Simulations with a cloud DSD based on in situ cloud observations corrected these errors.In addition,observation-based cloud DSDs affected rainfall amounts through the autoconversion rate of cloud water and improved the threat scores.These results suggest that realistic cloud DSDs should be provided for double-moment cloud microphysics schemes in scientific studies. 展开更多
关键词 cloud microphysics cloud droplet size distribution Autoconversion
在线阅读 下载PDF
Effect of Scattered Solar Radiation on the Informativeness of Polarization Lidar Studies of High-Level Clouds
6
作者 Ignatii Samokhvalov Ilia Bryukhanov +5 位作者 Ivan Akimov Olesia Kuchinskaia Maxim Penzin Denis Romanov Evgeny Ni Ivan Zhivotenyuk 《Journal of Environmental & Earth Sciences》 2025年第6期148-156,共9页
During daylight laser polarization sensing of high-level clouds(HLCs),the lidar receiving system generates a signal caused by not only backscattered laser radiation,but also scattered solar radiation,the intensity and... During daylight laser polarization sensing of high-level clouds(HLCs),the lidar receiving system generates a signal caused by not only backscattered laser radiation,but also scattered solar radiation,the intensity and polarization of which depends on the Sun’s location.If a cloud contains spatially oriented ice particles,then it becomes anisotropic,that is,the coefficients of directional light scattering of such a cloud depend on the Sun’s zenith and azimuth angles.In this work,the possibility of using the effect of anisotropic scattering of solar radiation on the predictive ability of machine learning algorithms in solving the problem of predicting the HLC backscattering phase matrix(BSPM)was evaluated.The hypothesis that solar radiation scattered on HLCs has no effect on the BSPM elements of such clouds determined with a polarization lidar was tested.The operation of two algorithms for predicting the BSPM elements is evaluated.To train the first one,meteorological data were used as input parameters;for the second algorithm,the azi-muthal and zenith angles of the Sun’s position were added to the meteorological parameters.It is shown that there is no significant improvement in the predictive ability of the algorithm. 展开更多
关键词 High-Level clouds(HLCs) Polarization Lidar Backscattering Phase Matrix(BSPM) Sun’s Azimuthal and Zenith Angles Scattered Solar Radiation cloud microphysics Machine Learning(ML) Random Forest
在线阅读 下载PDF
Observational Study of Cloud Microphysical Characteristics of Tropical Cyclones in Different Environmental Fields Using Multi-Source Satellite Data
7
作者 WANG Rui DUAN Yi-hong FENG Jia-ning 《Journal of Tropical Meteorology》 2025年第2期151-164,共14页
In this study, a variety of high-resolution satellite data were used to analyze the similarities and differences in horizontal and vertical cloud microphysical characteristics of 11 tropical cyclones(TCs) in three dif... In this study, a variety of high-resolution satellite data were used to analyze the similarities and differences in horizontal and vertical cloud microphysical characteristics of 11 tropical cyclones(TCs) in three different ocean basins.The results show that for the 11 TCs in different ocean basins, no matter in what season the TCs were generated when they reached or approached Category 4, their melting layers were all distributed in the vertical direction at the height of about 5 km. The high value of ice water contents in the vertical direction of 11 TCs all reach or approach about 2000 g cm^(–3).The total attenuated scattering coefficient at 532 nm, TAB-532, can successfully characterize the distribution of areas with high ice water content when the vertical distribution was concentrated near 0.1 km^(–1)sr^(–1), possibly because the diameter distribution of the corresponding range of aerosol particles had a more favorable effect on the formation of ice nuclei,indicating that aerosols had a significant impact on the ice-phase processes and characteristics. Moreover, by analyzing the horizontal cloud water content, the distribution analysis of cloud water path(CWP) and ice water path(IWP) shows that when the sea surface temperature was at a relatively high value, and the vertical wind shear was relatively small, the CWP and the IWP can reach a relatively high value, which also proves the importance of environmental field factors on the influence of TC cloud microphysical characteristics. 展开更多
关键词 tropical cyclone cloud microphysical characteristics AEROSOL SST vertical wind shear
在线阅读 下载PDF
Cloud Droplet Spectrum Evolution Driven by Aerosol Activation and Vapor Condensation:A Comparative Study of Different Bulk Parameterization Schemes
8
作者 Jun ZHANG Jiming SUN +2 位作者 Yu KONG Wei DENG Wenhao HU 《Advances in Atmospheric Sciences》 2025年第7期1316-1332,共17页
Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in we... Accurate descriptions of cloud droplet spectra from aerosol activation to vapor condensation using microphysical parameterization schemes are crucial for numerical simulations of precipitation and climate change in weather forecasting and climate prediction models.Hence,the latest activation and triple-moment condensation schemes were combined to simulate and analyze the evolution characteristics of a cloud droplet spectrum from activation to condensation and compared with a high-resolution Lagrangian bin model and the current double-moment condensation schemes,in which the spectral shape parameter is fixed or diagnosed by an empirical formula.The results demonstrate that the latest schemes effectively capture the evolution characteristics of the cloud droplet spectrum during activation and condensation,which is in line with the performance of the bin model.The simulation of the latest activation and condensation schemes in a parcel model shows that the cloud droplet spectrum gradually widens and exhibits a multimodal distribution during the activation process,accompanied by a decrease in the spectral shape and slope parameters over time.Conversely,during the condensation process,the cloud droplet spectrum gradually narrows,resulting in increases in the spectral shape and slope parameters.However,these double-moment schemes fail to accurately replicate the evolution of the cloud droplet spectrum and its multimodal distribution characteristics.Furthermore,the latest schemes were coupled into a 1.5D cumulus model,and an observation case was simulated.The simulations confirm that the cloud droplet spectrum appears wider at the supersaturated cloud base and cloud top due to activation,while it becomes narrower at the middle altitudes of the cloud due to condensation growth. 展开更多
关键词 cloud microphysical parameterization cloud droplet spectrum aerosol activation cloud droplet condensation
在线阅读 下载PDF
Semi-Idealized Modeling of Lightning Initiation Related to Vertical Air Motion and Cloud Microphysics 被引量:2
9
作者 fei wang yijun zhang +3 位作者 dong zheng liangtao xu wenjuan zhang qing meng 《Journal of Meteorological Research》 SCIE CSCD 2017年第5期976-986,共11页
A three-dimensional charge^lischarge numerical model is used, in a semi-idealized mode, to simulate a thunder- storm cell. Characteristics of the granpel microphysics and vertical air motion associated with the lightn... A three-dimensional charge^lischarge numerical model is used, in a semi-idealized mode, to simulate a thunder- storm cell. Characteristics of the granpel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge^diseharge model is available, The results show that the vertical air motion at the lightning initiation sites (Wini) has a cubic polynomial correlation with the maximum updraft of the storm cell (WceH_m^x), with the adjusted regression coefficient R2 of ap- proximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites (qg-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell (qg-cell-max) and the initiation height (Zini), with the coeffi- cients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of qg-oewm and below the upper edge of the granpel re- gion, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of qice (ice crystal mixing ratio) to qg (graupel mixing ratio) illustrates an exponential relation- ship to qg-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without char- ging/discharging schemes are available. The results can also help understand the environmental conditions at light- ning initiation sites. 展开更多
关键词 lightning initiation GRAUPEL ice crystal vertical air motion cloud microphysics
原文传递
A Simulation Study on the Characteristics of Cloud Microphysics of Heavy Rainfall in the Meiyu Front 被引量:1
10
作者 鞠永茂 王汉杰 +1 位作者 钟中 宋帅 《Acta meteorologica Sinica》 SCIE 2009年第2期206-222,共17页
A heavy rainfall in the Meiyu front during 4-5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3-6) with different explicit cloud microphysical parameterization schemes. The characteristic... A heavy rainfall in the Meiyu front during 4-5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3-6) with different explicit cloud microphysical parameterization schemes. The characteristics of microphysical process of convective cloud are studied by the model outputs. The simulation study reveals that: (1) The mesoscale model MM5 with explicit cloud microphysical process is capable of simulating the instant heavy rainfall in the Meiyu front, the rainfall simulation could be improved signifi- cantly as the model resolution is increased, and the Goddard scheme is better than the Reisner or Schultz scheme. (2) The convective cloud in the Meiyu front has a comprehensive structure composed of solid, liquid and vapor phases of water, the mass density of water vapor is the largest one in the cloud; the next one is graupel, while those of ice, snow, rain water and the cloud water are almost same. The height at which mass density peaks for different hydrometeors is almost unchangeable during the heavy rainfall period. The mass density variation of rain water, ice, and graupel are consistent with that of ground precipitation, while that of water vapor in the low levels is 1-2 h earlier than the precipitation. (3) The main contribution to the water vapor budget in the atmosphere is the convergence of vapor flux through advection and convection, which provides the main vapor source of the rainfall. Besides the basic process of the auto-conversion of cloud water to rain water, there is an additional cloud microphysical process that is essential to the formation of instant heavy rainfall, the ice-phase crystals are transformed into graupels first and then the increased graupels mix with cloud water and accelerates the conversion of cloud water to rain water. The positive feedback mechanism between latent heat release and convection is the main cause to maintain and develop the heavy precipitation. 展开更多
关键词 MM5 Meiyu front torrential rain Goddard cloud microphysical process TRMM
在线阅读 下载PDF
Cloud microphysical differences with precipitation intensity in a torrential rainfall event in Sichuan, China 被引量:5
11
作者 HUANG Yong-Jie CUI Xiao-Peng WANG Ya-Ping 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第2期90-98,共9页
High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall ... High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall was classified into five bins based on rainfall intensity, and the cloud microphysical characteristics and processes in different bins were studied. The results show that:(1) Hydrometeor content differed distinctly among different bins. Mixing ratios of cloud water, rain water, and graupel enhanced significantly and monotonously with increasing rainfall intensity. With increasing precipitation intensity, the monotonous increase in cloud water number concentration was significant. Meanwhile, number concentrations of rain water and graupel increased at first and then decreased or increased slowly in larger rainfall bins.(2) With precipitation intensity increasing, cloud microphysical conversion processes closely related to the production of rainwater, directly(accretion of cloud water by rain(QCLcr) and melting of graupel(QMLgr)) or indirectly(water vapor condensation and accretion of cloud water by graupel), increased significantly.(3) As the two main sources of rainwater, QCLcrincreased monotonously with increasing precipitation intensity, while QMLgr increased slowly, even tending to cease increasing in larger rainfall bins. 展开更多
关键词 cloud microphysics cloud microphysical processes torrential rainfall numerical simulation
在线阅读 下载PDF
The Cloud Processes of a Simulated Moderate Snowfall Event in North China 被引量:3
12
作者 林文实 布和朝鲁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第2期235-242,共8页
The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event i... The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20-21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow. 展开更多
关键词 SNOWFALL cloud microphysics parameterization cumulus parameterization MM5 North China
在线阅读 下载PDF
A STUDY OF THE INFLUENCE OF MICROPHYSICAL PROCESSES ON TYPHOON NIDA(2016) USING A NEW DOUBLE-MOMENT MICROPHYSICS SCHEME IN THE WEATHER RESEARCH AND FORECASTING MODEL 被引量:5
13
作者 LI Zhe ZHANG Yu-tao +2 位作者 LIU Qi-jun FU Shi-zuo MA Zhan-shan 《Journal of Tropical Meteorology》 SCIE 2018年第2期123-130,共8页
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium... The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required. 展开更多
关键词 Liuma microphysics scheme typhoon intensity cloud microphysics typhoon structure Weather Research and Forecasting model
在线阅读 下载PDF
Aircraft observation of cloud microphysical characteristics of pre-stratiform-cloud precipitation in Jiangxi Province 被引量:3
14
作者 FU Yuan LEI Heng-Chi 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第5期364-371,共8页
Based on Droplet Measurement Technologies data of a pre-stratiform-cloud precipitation event in Ganzhou, Jiangxi Province, on 11 November 2015, and combined with radar data, this paper comprehensively analyzes the mac... Based on Droplet Measurement Technologies data of a pre-stratiform-cloud precipitation event in Ganzhou, Jiangxi Province, on 11 November 2015, and combined with radar data, this paper comprehensively analyzes the macro-and microphysical characteristics of cloud in the upper trough.The results show that:(1) Detection takes place in the early stage of precipitation and the cloud has multiple layers. The cloud type is stratiform(Sc) and the height of the cloud base is 1009 m, 1009–1700 m is the low Sc layer, 1700–3000 m is the no-cloud level, and 3000 to the maximum height detected is another Sc layer.(2) The Sc is inhomogeneous in the horizontal and vertical directions.The particle number concentration and the effective diameter below the 0 °C layer is significantly higher than that above the 0 °C layer, which is in accordance with the ‘seeder–feeder' mechanism.Above the 0 °C layer is seeder cloud, where needle, column ice crystals and water droplets coexist,and sublimation and coalescence are the main processes. The morphology of ice crystals changes from needle to column, plate, and polymer as height decreases. Below the 0 °C warm layer is a supply cloud, and the particles develop in the supply cloud with abundant liquid water content. Ice melting and coalescence dominate the warm layer, which makes the effective diameter significantly increase. Down to 4150 m, the ice melts completely into raindrops. 展开更多
关键词 Stratiform cloud aircraft observation cloud microphysics Jiangxi Province
在线阅读 下载PDF
AN SENSITIVITY SIMULATION ABOUT CLOUD MICROPHYSICAL PROCESSES OF TYPHOON CHANCHU 被引量:2
15
作者 林文实 吴剑斌 +3 位作者 李江南 梁旭东 方杏芹 徐穗珊 《Journal of Tropical Meteorology》 SCIE 2010年第4期390-401,共12页
With the Reisner-2 bulk microphysical parameterization of the fifth-generation Pennsylvania State University-U.S. National Center for Atmospheric Research (PSU--NCAR) Mesoscale Model (MM5), this paper investigates... With the Reisner-2 bulk microphysical parameterization of the fifth-generation Pennsylvania State University-U.S. National Center for Atmospheric Research (PSU--NCAR) Mesoscale Model (MM5), this paper investigates the microphysical sensitivities of Typhoon Chanchu. Four different microphysical sensitivity experiments were designed with an objective to evaluate their respective impacts in modulating intensity forecasts and microphysics budgets of the typhoon. The set of sensitivity experiments were conducted that comprised (a) a control experiment (CTL), (b) NEVPRW from which evaporation of rain water was suppressed, (c) NGP from which graupel was taken, and (d) NMLT from which melting of snow and graupel was removed. We studied the impacts of different cloud microphysical processes on the track, intensity and precipitation of the typhoon, as well as the kinematics, thermodynamics and vertical structural characteristics of hydrometeors in the inner core of the typhoon. Additionally, the budgets of the cloud microphysical processes in the fine domain were calculated to quantify the importance of each microphysical process for every sensitivity experiment. The primary results are as follows: (1) It is found that varying cloud microphysics parameters produce little sensitivity in typhoon track experiments. (2) The experiment of NGP produces the weakest storm, while the experiment of NMLT produces the strongest storm, and the experiment of NEVPRW also produces stronger storms than CTL. (3) Varying parameters of cloud rnicrophysics have obvious impacts on the precipitation, kinematics, and thermodynamics of the typhoon and the vertical structural characteristics of hydrometeors in the typhoon's inner core. (4) Most budgets of cloud microphysics in NMLT are larger than in CTL, while they are 20%-60% smaller in NEVPRW than in CTL. 展开更多
关键词 Typhoon Chanchu cloud microphysics SIMULATION
在线阅读 下载PDF
Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles 被引量:1
16
作者 Yuan WANG Jonathan M. VOGEL +7 位作者 Yun LIN Bowen PAN Jiaxi HU Yangang LIU Xiquan DONG Jonathan H. JIANG Yuk L. YUNG Renyi ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第2期234-247,共14页
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative ... Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. 展开更多
关键词 aerosol-cloud-radiation interactions cloud-resolving model cloud microphysics and macrophysics precipita-tion
在线阅读 下载PDF
Analysis on the Macro and Micro Physical Characteristics of Stratiform Cloud in Henan
17
作者 李铁林 尹彬 +1 位作者 郭献林 邵振平 《Meteorological and Environmental Research》 CAS 2010年第10期96-100,共5页
By using the microphysical data of stratiform cloud in Henan which were observed by PMS airborne cloud particle measure system on March 23 in 2007 and combining with the radar,satellite,sounding data,the macro and mic... By using the microphysical data of stratiform cloud in Henan which were observed by PMS airborne cloud particle measure system on March 23 in 2007 and combining with the radar,satellite,sounding data,the macro and micro physical structure characteristics of cloud were analyzed.The results showed that the average diameter of small cloud drop which was measured by FSSP-100 in the warm layer of cloud was mainly during 5-12 μm,and the average value was 7.33 μm.The biggest diameter of small cloud drop changed during 14-47 μm,and the average value was 27.80 μm.The total number concentration scope of small cloud drop was during 47.73-352.00 drop/cm3,and the average value was 160 drop/cm3.In the cold layer of cloud,the biggest diameter of small cloud particle(included the cloud droplet and the ice crystals)which was measured by FSSP-100 was 24.8 μm.The total number concentration scope of small cloud particle was during 0.899-641.000 drop/cm3,and the average value was 297 drop/cm3.The airborne King heat line liquid water content instrument observed that the super-cooling liquid water existed in the cloud.The super-cooling cloud water content changed during 0.02-0.20 g/m3,and the average value was 0.093 g/m3.The biggest value which was 0.202 g/m3 appeared in 4 368 m height(the temperature was-8.5 ℃).The particle spectrum type in the cloud was mainly the negative exponent type and the single peak type. 展开更多
关键词 Microphysical characteristic of cloud Number concentration Super-cooling cloud water content China
在线阅读 下载PDF
The Importance of the Shape Parameter in a Bulk Parameterization Scheme to the Evolution of the Cloud Droplet Spectrum during Condensation
18
作者 Jun ZHANG Jiming SUN +2 位作者 Wei DENG Wenhao HU Yongqing WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期155-167,共13页
The shape parameter of the Gamma size distribution plays a key role in the evolution of the cloud droplet spectrum in the bulk parameterization schemes. However, due to the inaccurate specification of the shape parame... The shape parameter of the Gamma size distribution plays a key role in the evolution of the cloud droplet spectrum in the bulk parameterization schemes. However, due to the inaccurate specification of the shape parameter in the commonly used bulk double-moment schemes, the cloud droplet spectra cannot reasonably be described during the condensation process. Therefore, a newly-developed triple-parameter condensation scheme with the shape parameter diagnosed through the number concentration, cloud water content, and reflectivity factor of cloud droplets can be applied to improve the evolution of the cloud droplet spectrum. The simulation with the new parameterization scheme was compared to those with a high-resolution Lagrangian bin scheme, the double-moment schemes in a parcel model, and the observation in a 1.5D Eulerian model that consists of two cylinders. The new scheme with the shape parameter varying with time and space can accurately simulate the evolution of the cloud droplet spectrum. Furthermore, the volume-mean radius and cloud water content simulated with the new scheme match the Lagrangian analytical solutions well, and the errors are steady, within approximately 0.2%. 展开更多
关键词 cloud microphysics parameterization cloud droplet spectrum double-moment scheme shape parameter
在线阅读 下载PDF
Evaluating the Impacts of Cloud Microphysical and Overlap Parameters on Simulated Clouds in Global Climate Models
19
作者 Haibo WANG Hua ZHANG +3 位作者 Bing XIE Xianwen JING Jingyi HE Yi LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2172-2187,I0023,I0024,共18页
The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud mic... The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty. 展开更多
关键词 cloud fraction cloud microphysics scheme cloud radiative forcing vertical cloud overlap
在线阅读 下载PDF
Dominant Cloud Microphysical Processes of a Torrential Rainfall Event in Sichuan, China 被引量:12
20
作者 HUANG Yongjie CUI Xiaopeng 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期389-400,共12页
High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microp... High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall.The results showed that:(1) In the strong precipitation period,particle sizes of all hydrometeors increased,and mean-mass diameters of graupel increased the most significantly,as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors,followed by graupel's,which was much smaller than that of raindrops.Differences between various hydrometeors' terminal velocities in the strong precipitation period were larger than those in the weak precipitation period,which favored relative motion,collection interaction and transformation between the particles.Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity,and the stronger the precipitation was,the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors' sources and sinks in the strong precipitation period were larger than those in the weak precipitation period,causing a difference in the intensity of precipitation.Water vapor,cloud water,raindrops,graupel and their exchange processes played a major role in the production of the torrential rainfall,and there were two main processes via which raindrops were generated:abundant water vapor condensed into cloud water and,on the one hand,accretion of cloud water by rain water formed rain water,while on the other hand,accretion of cloud water by graupel formed graupel,and then the melting of graupel formed rain water. 展开更多
关键词 torrential rainfall SICHUAN cloud microphysical processes numerical simulation
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部