期刊文献+
共找到843篇文章
< 1 2 43 >
每页显示 20 50 100
Workload-aware request routing in cloud data center using software-defined networking
1
作者 Haitao Yuan Jing Bi Bohu Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期151-160,共10页
Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic info... Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic information in the network. Therefore, the controllers can only optimize the network latency of applications. However, the serving latency of applications is also an important factor in delivered user-experience for arrival requests. Unintelligent request routing will cause large serving latency if arrival requests are allocated to overloaded virtual machines. To deal with the request routing problem, this paper proposes the workload-aware software-defined networking controller architecture. Then, request routing algorithms are proposed to minimize the total round trip time for every type of request by considering the congestion in the network and the workload in virtual machines(VMs). This paper finally provides the evaluation of the proposed algorithms in a simulated prototype. The simulation results show that the proposed methodology is efficient compared with the existing approaches. 展开更多
关键词 cloud data center(CDC) software-defined networking request routing resource allocation network latency optimization
在线阅读 下载PDF
Low-power task scheduling algorithm for large-scale cloud data centers 被引量:3
2
作者 Xiaolong Xu Jiaxing Wu +1 位作者 Geng Yang Ruchuan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期870-878,共9页
How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data cente... How to effectively reduce the energy consumption of large-scale data centers is a key issue in cloud computing. This paper presents a novel low-power task scheduling algorithm (L3SA) for large-scale cloud data centers. The winner tree is introduced to make the data nodes as the leaf nodes of the tree and the final winner on the purpose of reducing energy consumption is selected. The complexity of large-scale cloud data centers is fully consider, and the task comparson coefficient is defined to make task scheduling strategy more reasonable. Experiments and performance analysis show that the proposed algorithm can effectively improve the node utilization, and reduce the overall power consumption of the cloud data center. 展开更多
关键词 cloud computing data center task scheduling energy consumption.
在线阅读 下载PDF
Subject Oriented Autonomic Cloud Data Center Networks Model
3
作者 Hang Qin Li Zhu 《Journal of Data Analysis and Information Processing》 2017年第3期87-95,共9页
This paper investigates autonomic cloud data center networks, which is the solution with the increasingly complex computing environment, in terms of the management and cost issues to meet users’ growing demand. The v... This paper investigates autonomic cloud data center networks, which is the solution with the increasingly complex computing environment, in terms of the management and cost issues to meet users’ growing demand. The virtualized cloud networking is to provide a plethora of rich online applications, including self-configuration, self-healing, self-optimization and self-protection. In addition, we draw on the intelligent subject and multi-agent system, concerning system model, strategy, autonomic cloud computing, involving independent computing system development and implementation. Then, combining the architecture with the autonomous unit, we propose the MCDN (Model of Autonomic Cloud Data Center Networks). This model can define intelligent state, elaborate the composition structure, and complete life cycle. Finally, our proposed public infrastructure can be provided with the autonomous unit in the supported interaction model. 展开更多
关键词 AUTONOMIC cloud Computing AUTONOMOUS Unit data center SELF-CONFIGURATION Service DESCRIPTION
在线阅读 下载PDF
Efficient Multi-Tenant Virtual Machine Allocation in Cloud Data Centers 被引量:2
4
作者 Jiaxin Li Dongsheng Li +1 位作者 Yuming Ye Xicheng Lu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第1期81-89,共9页
Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and th... Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and the network distance between a tenant's VMs may considerably impact the tenant's Quality of Service(Qo S). In this study, we define and formulate the multi-tenant VM allocation problem in cloud data centers, considering the VM requirements of different tenants, and introducing the allocation goal of minimizing the sum of the VMs' network diameters of all tenants. Then, we propose a Layered Progressive resource allocation algorithm for multi-tenant cloud data centers based on the Multiple Knapsack Problem(LP-MKP). The LP-MKP algorithm uses a multi-stage layered progressive method for multi-tenant VM allocation and efficiently handles unprocessed tenants at each stage. This reduces resource fragmentation in cloud data centers, decreases the differences in the Qo S among tenants, and improves tenants' overall Qo S in cloud data centers. We perform experiments to evaluate the LP-MKP algorithm and demonstrate that it can provide significant gains over other allocation algorithms. 展开更多
关键词 virtual machine allocation cloud data center multiple tenants multiple knapsack problem
原文传递
Resilient Power Systems Operation with Offshore Wind Farms and Cloud Data Centers 被引量:2
5
作者 Shengwei Liu Yuanzheng Li +2 位作者 Xuan Liu Tianyang Zhao Peng Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第6期1985-1998,共14页
To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal imp... To enhance the resilience of power systems with offshore wind farms(OWFs),a proactive scheduling scheme is proposed to unlock the flexibility of cloud data centers(CDCs)responding to uncertain spatial and temporal impacts induced by hurricanes.The total life simulation(TLS)is adopted to project the local weather conditions at transmission lines and OWFs,before,during,and after the hurricane.The static power curve of wind turbines(WTs)is used to capture the output of OWFs,and the fragility analysis of transmission-line components is used to formulate the time-varying failure rates of transmission lines.A novel distributionally robust ambiguity set is constructed with a discrete support set,where the impacts of hurricanes are depicted by these supports.To minimize load sheddings and dropping workloads,the spatial and temporal demand response capabilities of CDCs according to task migration and delay tolerance are incorporated into resilient management.The flexibilities of CDC’s power consumption are integrated into a two-stage distributionally robust optimization problem with conditional value at risk(CVaR).Based on Lagrange duality,this problem is reformulated into its deterministic counterpart and solved by a novel decomposition method with hybrid cuts,admitting fewer iterations and a faster convergence rate.The effectiveness of the proposed resilient management strategy is verified through case studies conducted on the modified IEEERTS 24 system,which includes 4 data centers and 5 offshore wind farms. 展开更多
关键词 cloud computing data center decomposition HURRICANE offshore wind farm resilience enhancement total life simulation unit commitment
原文传递
VirtCO:Joint Coflow Scheduling and Virtual Machine Placement in Cloud Data Centers 被引量:3
6
作者 Dian Shen Junzhou Luo +1 位作者 Fang Dong Junxue Zhang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第5期630-644,共15页
Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the perf... Cloud data centers, such as Amazon EC2, host myriad big data applications using Virtual Machines(VMs). As these applications are communication-intensive, optimizing network transfer between VMs is critical to the performance of these applications and network utilization of data centers. Previous studies have addressed this issue by scheduling network flows with coflow semantics or optimizing VM placement with traffic considerations.However, coflow scheduling and VM placement have been conducted orthogonally. In fact, these two mechanisms are mutually dependent, and optimizing these two complementary degrees of freedom independently turns out to be suboptimal. In this paper, we present VirtCO, a practical framework that jointly schedules coflows and places VMs ahead of VM launch to optimize the overall performance of data center applications. We model the joint coflow scheduling and VM placement optimization problem, and propose effective heuristics for solving it. We further implement VirtCO with OpenStack and deploy it in a testbed environment. Extensive evaluation of real-world traces shows that compared with state-of-the-art solutions, VirtCO greatly reduces the average coflow completion time by up to 36.5%. This new framework is also compatible with and readily deployable within existing data center architectures. 展开更多
关键词 cloud computing data center coflow SCHEDULING Virtual Machine (VM) PLACEMENT
原文传递
Virtual machine placement optimizing to improve network performance in cloud data centers 被引量:3
7
作者 DONG Jian-kang WANG Hong-bo +1 位作者 LI Yang-yang CHENG Shi-duan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2014年第3期62-70,共9页
With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP... With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP) solutions are mainly to optimize server resources. However, they pay little consideration on network resources optimization, and they do not concern the impact of the network topology and the current network traffic. A multi-resource constraints VMP scheme is proposed. Firstly, the authors attempt to reduce the total communication traffic in the data center network, which is abstracted as a quadratic assignment problem; and then aim at optimizing network maximum link utilization (MLU). On the condition of slight variation of the total traffic, minimizing MLU can balance network traffic distribution and reduce network congestion hotspots, a classic combinatorial optimization problem as well as NP-hard problem. Ant colony optimization and 2-opt local search are combined to solve the problem. Simulation shows that MLU is decreased by 20%, and the number of hot links is decreased by 37%. 展开更多
关键词 cloud computing data center network virtual machine placement traffic engineering network performance
原文传递
A cost-effective scheme supporting adaptive service migration in cloud data center 被引量:1
8
作者 Bing YU Yanni HAN +2 位作者 Hanning YUAN Xu ZHOU Zhen XU 《Frontiers of Computer Science》 SCIE EI CSCD 2015年第6期875-886,共12页
Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the perform... Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the performance of deployed services. In this paper, we propose MAMOC, a cost-effective approach for selecting the server and migrating services to attain enhanced QoS more econom- ically. The goal of MAMOC is to minimize the total operating cost while guaranteeing the constraints of resource de- mands, storage capacity, access latency and economies, including selling price and reputation grade. First, we devise an objective optimal model with multi-constraints, describing the relationship among operating cost and the above con- straints. Second, a normalized method is adopted to calculate the operating cost for each candidate VM. Then we give a de- tailed presentation on the online algorithm MAMOC, which determines the optimal server. To evaluate the performance of our proposal, we conducted extensive simulations on three typical network topologies and a realistic data center net- work. Results show that MAMOC is scalable and robust with the larger scales of requests and VMs in cloud environment. Moreover, MAMOC decreases the competitive ratio by identifying the optimal migration paths, while ensuring the constraints of SLA as satisfying as possible. 展开更多
关键词 cloud computing software-defined networking data center service migration QoS
原文传递
Scalability of the DVFS Power Management Technique as Applied to 3-Tier Data Center Architecture in Cloud Computing
9
作者 Sulieman Bani-Ahmad Saleh Sa’adeh 《Journal of Computer and Communications》 2017年第1期69-93,共25页
The increase in computing capacity caused a rapid and sudden increase in the Operational Expenses (OPEX) of data centers. OPEX reduction is a big concern and a key target in modern data centers. In this study, the sca... The increase in computing capacity caused a rapid and sudden increase in the Operational Expenses (OPEX) of data centers. OPEX reduction is a big concern and a key target in modern data centers. In this study, the scalability of the Dynamic Voltage and Frequency Scaling (DVFS) power management technique is studied under multiple different workloads. The environment of this study is a 3-Tier data center. We conducted multiple experiments to find the impact of using DVFS on energy reduction under two scheduling techniques, namely: Round Robin and Green. We observed that the amount of energy reduction varies according to data center load. When the data center load increases, the energy reduction decreases. Experiments using Green scheduler showed around 83% decrease in power consumption when DVFS is enabled and DC is lightly loaded. In case the DC is fully loaded, in which case the servers’ CPUs are constantly busy with no idle time, the effect of DVFS decreases and stabilizes to less than 10%. Experiments using Round Robin scheduler showed less energy saving by DVFS, specifically, around 25% in light DC load and less than 5% in heavy DC load. In order to find the effect of task weight on energy consumption, a set of experiments were conducted through applying thin and fat tasks. A thin task has much less instructions compared to fat tasks. We observed, through the simulation, that the difference in power reduction between both types of tasks when using DVFS is less than 1%. 展开更多
关键词 cloud Computing data centerS Operational EXPENSES Green Technology DVFS Energy Reduction
在线阅读 下载PDF
Towards Attaining Reliable and Efficient Green Cloud Computing Using Micro-Smart Grids to Power Internet Data Center
10
作者 Mohammed Mansur Ibrahim Anas Ahmad Danbala Mustapha Ismail 《Journal of Computer and Communications》 2019年第7期195-205,共11页
Energy generation and consumption are the main aspects of social life due to the fact that modern people’s necessity for energy is a crucial ingredient for existence. Therefore, energy efficiency is regarded as the b... Energy generation and consumption are the main aspects of social life due to the fact that modern people’s necessity for energy is a crucial ingredient for existence. Therefore, energy efficiency is regarded as the best economical approach to provide safer and affordable energy for both utilities and consumers, through the enhancement of energy security and reduction of energy emissions. One of the problems of cloud computing service providers is the high rise in the cost of energy, efficiency together with carbon emission with regards to the running of their internet data centres (IDCs). In order to mitigate these issues, smart micro-grid was found to be suitable in increasing the energy efficiency, sustainability together with the reliability of electrical services for the IDCs. Therefore, this paper presents idea on how smart micro-grids can bring down the disturbing cost of energy, carbon emission by the IDCs with some level of energy efficiency all in an effort to attain green cloud computing services from the service providers. In specific term, we aim at achieving green information and communication technology (ICT) in the field of cloud computing in relations to energy efficiency, cost-effectiveness and carbon emission reduction from cloud data center’s perspective. 展开更多
关键词 cloud Computing INTERNET data center Green IT Energy Efficiency Mi-cro-Smart Grids
在线阅读 下载PDF
Improved Verifiability Scheme for Data Storage in Cloud Computing
11
作者 YANG Xiaoyuan ZHU Shuaishuai PAN Xiaozhong 《Wuhan University Journal of Natural Sciences》 CAS 2011年第5期399-404,共6页
In Cloud computing, data and service requests are responded by remote processes calls on huge data server clusters that are not totally trusted. The new computing pattern may cause many potential security threats. Thi... In Cloud computing, data and service requests are responded by remote processes calls on huge data server clusters that are not totally trusted. The new computing pattern may cause many potential security threats. This paper explores how to ensure the integrity and correctness of data storage in cloud computing with user's key pair. In this paper, we aim mainly at constructing of a quick data chunk verifying scheme to maintain data in data center by implementing a balance strategy of cloud computing costs, removing the heavy computing load of clients, and applying an automatic data integrity maintenance method. In our scheme, third party auditor (TPA) is kept in the scheme, for the sake of the client, to periodically check the integrity of data blocks stored in data center. Our scheme supports quick public data integrity verification and chunk redundancy strategy. Compared with the existing scheme, it takes the advantage of ocean data support and high performance. 展开更多
关键词 cloud computing data verifiability data center data interity
原文传递
Hybrid Cloud Architecture for Higher Education System
12
作者 Omar Nooh Almotiry Mohemmed Sha +1 位作者 Mohamudha Parveen Rahamathulla Omer Salih Dawood Omer 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期1-12,共12页
As technology improves,several modernization efforts are taken in the process of teaching and learning.An effective education system should maintain global connectivity,federate security and deliver self-access to its... As technology improves,several modernization efforts are taken in the process of teaching and learning.An effective education system should maintain global connectivity,federate security and deliver self-access to its services.The cloud computing services transform the current education system to an advanced one.There exist several tools and services to make teaching and learning more interesting.In the higher education system,the data flow and basic operations are almost the same.These systems need to access cloud-based applications and services for their operational advancement and flexibility.Architecting a suitable cloud-based education system will leverage all the benefits of the cloud to its stakeholders.At the same time,educational institutions want to keep their sensitive information more secure.For that,they need to maintain their on-premises data center along with the cloud infrastructure.This paper proposes an advanced,flexible and secure hybrid cloud architecture to satisfy the growing demands of an education system.By sharing the proposed cloud infrastructure among several higher educational institutions,there is a possibility to implement a common education system among organizations.Moreover,this research demonstrates how a cloud-based education architecture can utilize the advantages of the cloud resources offered by several providers in a hybrid cloud environment.In addition,a reference architecture using Amazon Web Service(AWS)is proposed to implement a common university education system. 展开更多
关键词 Educational cloud hybrid cloud cloud services cloud data center cloud education system
在线阅读 下载PDF
基于H3Cloud架构的广播电视云数据中心IT设备层可靠性分析
13
作者 刘卫宏 《电视技术》 2021年第6期5-7,共3页
论述广播电视云数据中心的应用需求,分析基于H3Cloud云架构的广播电视云数据中心的IT设备计算接入层、基础设施层、网络控制与智能保障层以及业务交付层的可靠性技术手段,指出广播电视云数据中心设计和建设过程需要对各层次的可靠性进... 论述广播电视云数据中心的应用需求,分析基于H3Cloud云架构的广播电视云数据中心的IT设备计算接入层、基础设施层、网络控制与智能保障层以及业务交付层的可靠性技术手段,指出广播电视云数据中心设计和建设过程需要对各层次的可靠性进行深入分析和论证,并根据应用需求进行可靠性强化。 展开更多
关键词 云数据中心 虚拟化 可靠性
在线阅读 下载PDF
CloudSim中基于优先级的轮询服务代理算法
14
作者 刘君玲 《莆田学院学报》 2014年第5期58-60,共3页
针对服务代理采用的现有数据中心选择算法存在系统性能低和总体成本高等问题,提出一种基于优先级的轮询服务代理算法。该算法对数据中心的优先级进行定义,并根据数据中心的优先级选择数据中心。通过基于CloudSim仿真器的实验,结果证明... 针对服务代理采用的现有数据中心选择算法存在系统性能低和总体成本高等问题,提出一种基于优先级的轮询服务代理算法。该算法对数据中心的优先级进行定义,并根据数据中心的优先级选择数据中心。通过基于CloudSim仿真器的实验,结果证明该算法比现有数据中心选择算法拥有更好的性能。 展开更多
关键词 云计算 优先级 服务代理 轮询 数据中心
在线阅读 下载PDF
高能效驱动的云数据中心虚拟机动态整合
15
作者 任明 沈达 《信息技术》 2025年第5期50-56,共7页
在保障云应用服务质量的同时,提高能源利用效率以节省能源消耗是大规模云计算数据中心资源管理的主要挑战之一。针对现有技术未能平衡能源消耗和服务质量以实现整体效能优化目标的问题,文中提出一种高能效驱动的云数据中心虚拟机动态整... 在保障云应用服务质量的同时,提高能源利用效率以节省能源消耗是大规模云计算数据中心资源管理的主要挑战之一。针对现有技术未能平衡能源消耗和服务质量以实现整体效能优化目标的问题,文中提出一种高能效驱动的云数据中心虚拟机动态整合方法。首先,基于强化学习技术使用分布式多智能体,通过执行动作和获得收益的反馈机制在运行时选择每个主机最佳功率模式;其次,基于集中式启发式算法,根据主机功率模式、迁移开销及服务质量等多维度指标综合分析动态迁移虚拟机;最后,实验结果表明,文中方法能够有效节省能耗并保障服务质量。 展开更多
关键词 云计算 数据中心 强化学习 虚拟机整合 高能效
在线阅读 下载PDF
云计算数据中心服务器检测维修模块化教学的实践路径 被引量:2
16
作者 王宁 《信息与电脑》 2025年第4期203-205,共3页
在云计算蓬勃发展的时代,数据中心服务器的稳定运行至关重要,对服务器检测维修专业人才的需求也日益增长,模块化教学在云计算数据中心服务器检测维修教学中具有独特的教学优势。文章深入探讨了该课程模块化教学的实践路径,旨在为培养符... 在云计算蓬勃发展的时代,数据中心服务器的稳定运行至关重要,对服务器检测维修专业人才的需求也日益增长,模块化教学在云计算数据中心服务器检测维修教学中具有独特的教学优势。文章深入探讨了该课程模块化教学的实践路径,旨在为培养符合行业需求的高素质专业人才提供有益参考。 展开更多
关键词 云计算 数据中心 检测维修
在线阅读 下载PDF
基于人工智能的智慧校园信息化集成平台建设与应用研究 被引量:1
17
作者 严博文 刘向锋 《信息与电脑》 2025年第13期89-91,共3页
针对当前高职院校在信息化建设中普遍存在的基础设施老化、数据孤岛、教学资源利用不足、管理效率低下等痛点,文章提出了一套基于“云–边–端”协同、微服务治理和智能数据中台的智慧校园集成平台架构。平台由基础平台、管理平台和服... 针对当前高职院校在信息化建设中普遍存在的基础设施老化、数据孤岛、教学资源利用不足、管理效率低下等痛点,文章提出了一套基于“云–边–端”协同、微服务治理和智能数据中台的智慧校园集成平台架构。平台由基础平台、管理平台和服务平台三大模块构成,遵循高可用、高扩展、高安全、高智能的设计原则。经校内试点应用,平台显著改善了系统互通性、教学资源调度和管理协同水平,有效提升了教学质量、管理效率和资源利用率,为西部高职院校提供了可复制、可推广的智慧校园建设范式。 展开更多
关键词 智慧校园 “云–边–端”协同 微服务 数据中台
在线阅读 下载PDF
新型云数据中心建设的集成管理研究 被引量:1
18
作者 杨招 《数字通信世界》 2025年第3期10-12,共3页
本文从新型云数据中心概述、新型云数据中心建设的集成管理出发,对新型云数据中心建设项目的管理体系进行了深入探讨,并结合云数据中心建设的成功案例,分析了新型云数据中心建设中的项目管理关键点,以期能够为大型企业的云数据中心建设... 本文从新型云数据中心概述、新型云数据中心建设的集成管理出发,对新型云数据中心建设项目的管理体系进行了深入探讨,并结合云数据中心建设的成功案例,分析了新型云数据中心建设中的项目管理关键点,以期能够为大型企业的云数据中心建设提供有益的参考。 展开更多
关键词 云数据中心 项目管理 集成管理 数据中心建设
在线阅读 下载PDF
IP技术在云计算数据中心组网中的应用
19
作者 张作宇 《计算机应用文摘》 2025年第20期202-204,共3页
作为现代信息技术的核心基础设施,云计算有力驱动了大规模数据中心的快速发展.面对海量数据的高效处理与快速传输需求,数据中心的网络架构亟待强化高吞吐、低延迟与可扩展性的能力.在此背景下,高效且可扩展的网络技术成为数据中心设计... 作为现代信息技术的核心基础设施,云计算有力驱动了大规模数据中心的快速发展.面对海量数据的高效处理与快速传输需求,数据中心的网络架构亟待强化高吞吐、低延迟与可扩展性的能力.在此背景下,高效且可扩展的网络技术成为数据中心设计与优化的关键所在.文章聚焦于IP技术在云计算数据中心组网中的多方面应用,重点围绕IP基础架构设计、路由与负载均衡技术、网络虚拟化方案、高可用性与容错机制等核心议题展开系统分析,旨在为相关网络架构的设计和性能优化提供理论参考与实践指导. 展开更多
关键词 IP技术 云计算 数据中心 组网 应用
在线阅读 下载PDF
IPTV集成播控平台数据中心网络迁移方案设计与实施 被引量:1
20
作者 陈静 陈前 《广播与电视技术》 2025年第6期33-40,共8页
本文围绕湖北广电长江云IPTV集成播控平台数据中心机房搬迁实践,聚焦IPTV业务跨机房网络迁移方案设计和实施过程中的技术创新及面临的难点,从直播系统网络架构、云平台网络架构、运营商专线建设、网络链路割接等多个方面进行了探讨和解析。
关键词 长江云 IPTV 数据中心 专线链路 网络迁移 链路割接
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部