期刊文献+
共找到1,052篇文章
< 1 2 53 >
每页显示 20 50 100
13th Techtextil Closes with Record Figures
1
《China Textile》 2009年第7期18-19,共2页
The technical textile and nonwovens sector came in droves to its leading international trade fair, with numbers never before seen. "Precisely because these are times of economic uncertainty, companies have been s... The technical textile and nonwovens sector came in droves to its leading international trade fair, with numbers never before seen. "Precisely because these are times of economic uncertainty, companies have been setting themselves 展开更多
关键词 IWTO Techtextil closes with Record Figures PLANCK INNOVATION very
在线阅读 下载PDF
15th WPC Closes in Success
2
《China Oil & Gas》 CAS 1997年第4期201-201,共1页
关键词 WPC closes in Success
在线阅读 下载PDF
Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury 被引量:1
3
作者 Mou Gao Qin Dong +3 位作者 Dan Zou Zhijun Yang Lili Guo Ruxiang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1416-1430,共15页
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ... Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury. 展开更多
关键词 Akt signaling cerebral edema closed head injury Crry CXCR4 induced neural stem cell MICROGLIA NEUROINFLAMMATION
暂未订购
Regulating the“core-shell”microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode 被引量:3
4
作者 Haihua Wang Huizhu Niu +6 位作者 Kewei Shu Liyu Sun Yu Wang Yifan Du Yun Han Cunguo Yang Yong-Mook Kang 《Journal of Materials Science & Technology》 2025年第6期161-170,共10页
Pore structure engineering has been acknowledged as suitable approach to creating active sites and en-hancing ion transport capabilities of hard carbon anodes.However,conventional porous carbon materials exhibit high ... Pore structure engineering has been acknowledged as suitable approach to creating active sites and en-hancing ion transport capabilities of hard carbon anodes.However,conventional porous carbon materials exhibit high BET and surface defects.Additionally,the sodium storage mechanism predominantly occurs in the slope region.This contradicts practical application requirements because the capacity of the plateau region is crucial for determining the actual capacity of batteries.In our work,we prepared a novel“core-shell”carbon framework(CNA1200).Introducingclosedporesand carboxylgroupsinto coal-basedcarbon materials to enhance its sodium storage performance.The closed pore structure dominates in the“core”structure,which is attributed to the timely removal of sodium hydroxide(NaOH)to prevent further for-mation of active carbon structure.The presence of closed pores is beneficial for increasing sodium ion storage in the low-voltage plateau region.And the“shell”structure originates from coal tar pitch,it not only uniformly connects hard carbon particles together to improve cycling stability,but is also rich in carboxyl groups to enhance the reversible sodium storage performance in slope region.CNA1200 has ex-cellent electrochemical performance,it exhibits a specific capacity of 335.2 mAh g^(−1)at a current density of 20 mA g^(−1)with ICE=51.53%.In addition,CNA1200 has outstanding cycling stability with a capac-ity retention of 91.8%even when cycling over 200 times.When CNA1200 is used as anode paired with Na_(3)V_(2)(PO_(4))_(3)cathode,it demonstrates a capacity of 109.54 mAh g^(−1)at 0.1 C and capacity retention of 94.64%at 0.5 C.This work provides valuable methods for regulating the structure of sodium-ion battery(SIBs)anode and enhances the potential for commercialization. 展开更多
关键词 Hard carbon plateau region NaOH controlled etching-thermal annealing Closed pore structure Carboxyl groups Coal-based carbon materials
原文传递
Construction of hard carbon with abundant closed ultra-micropores via a pre-oxidation strategy for high-efficiency sodium storage in the low potential plateau 被引量:1
5
作者 Wenbo Hou Lili Ma +6 位作者 Zhiyuan Liu Yiming Hu Wenxing Miao Bo Tao Kanjun Sun Hui Peng Guofu Ma 《Journal of Energy Chemistry》 2025年第6期65-75,I0003,共12页
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv... Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores. 展开更多
关键词 Pre-oxidation strategy Closed ultra-micropores Low potential plateau Sodium-ion storage
在线阅读 下载PDF
Microstructure-mechanism-performance relationships in hard carbon anode materials for sodium-ion batteries
6
作者 LI Jin-ting Sawut Nurbiye +3 位作者 ZHAO Yi-chu LIU Ping WANG Yan-xia CAO Yu-liang 《新型炭材料(中英文)》 北大核心 2025年第4期860-869,共10页
The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performan... The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performance.However,there is still disagreement regarding the sodium storage mechanism in the low-voltage plateau region of HC anodes,and the structure-performance relationship between its complex multiscale micro/nanostructure and electrochemical behavior remains unclear.This paper summarizes current research progress and the major problems in understanding HC’s microstructure and sodium storage mechanism,and the relationship between them.Findings about a universal sodium storage mechanism in HC,including predictions about micropore-capacity relationships,and the opportunities and challenges for using HC anodes in commercial SIBs are presented. 展开更多
关键词 Sodium-ion battery Hard carbon ANODE Closed pore
在线阅读 下载PDF
Multiplicity and Stability of Closed Characteristics on Compact Convex Hypersurfaces in R^(2n)
7
作者 WANG Wei 《数学进展》 北大核心 2025年第4期673-686,共14页
A survey of recent progress on the multiplicity and stability problems for closed characteristics on compact convex hypersurfaces in R^(2n) is given.
关键词 compact convex hypersurface closed characteristic Hamiltonian system Morse theory index iteration theory
原文传递
Tailoring the pore structure of hard carbon for enhanced sodium-ion battery anodes
8
作者 SONG Ning-Jing MA Can-liang +3 位作者 GUO Nan-nan ZHAO Yun LI Wan-xi LI Bo-qiong 《新型炭材料(中英文)》 北大核心 2025年第2期377-391,共15页
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv... Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials. 展开更多
关键词 Pore structure regulation Closed pore Corn cob Hard carbon anode material Sodium-ion batteries
在线阅读 下载PDF
Influential Factors of Suicidal Ideation among University Students——The Moderating Role of Family Closeness and Peer Support
9
作者 Jun Qiu Jinling Wang 《International Journal of Mental Health Promotion》 2025年第4期484-504,共21页
Objectives:Suicidal ideation(SI)among university students is a growing concern,influenced by anxiety,depression,and bullying.However,family closeness and peer support may act as protective factors,reducing the risk of... Objectives:Suicidal ideation(SI)among university students is a growing concern,influenced by anxiety,depression,and bullying.However,family closeness and peer support may act as protective factors,reducing the risk of SI.Therefore,this study aims to investigate the key factors influencing SI among university students,focusing on the effects of anxiety,depression,and bullying,along with the roles of family closeness and peer support.The research also explores the interactions and mechanisms between these variables.Methods:A sample of 318 university students was surveyed,evaluating six main factors:anxiety,depression,bullying,family closeness,peer support,and SI.Using the Structural Equation Modeling(SEM)and Artificial Neural Networks(ANN)approach,both compensatory and non-compensatory relationships were examined.Results:Anxiety,depression,and bullying significantly contribute to SI,with depression mediating the link between anxiety,bullying,and SI.Additionally,family closeness moderates the effects of anxiety and bullying on SI,while peer supportmoderates the effects of depression and bullying.Themultilayer perceptron analysis identifies peer support as the most influential predictor,followed by bullying,family closeness,depression,and anxiety.Conclusion:The study identifies anxiety,depression,and bullying as key factors influencing suicidal ideation(SI)among university students.Family closeness and peer support act as protective factors,moderating the effects of these variables on SI. 展开更多
关键词 ANXIETY DEPRESSION bullying experience family closeness peer support suicidal ideation
在线阅读 下载PDF
Comprehensive Understanding of Closed Pores in Hard Carbon Anode for High-Energy Sodium-Ion Batteries
10
作者 Siyang Gan Yujie Huang +9 位作者 Ningyun Hong Yinghao Zhang Bo Xiong Zhi Zheng Zidong He Shengrui Gao Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 2025年第12期679-731,共53页
Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of ... Hard carbon(HC)is considered the most promising anode material for sodium-ion batteries(SIBs)due to its high costeffectiveness and outstanding overall performance.However,the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure-performance relationship,which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores.An irrational construction methodology of closed pores inevitably results in diminished plateau capacity,which severely restricts the practical application of HC in high-energy-density scenarios.This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores,offering critical insights into their structural characteristics and formation pathways.Subsequently,by correlating lattice parameters with defect configurations,the structure-performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established.Furthermore,pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC.It is imperative to emphasize that adopting a molecular-level perspective,coupled with a synergistic kinetic/thermodynamic approach,is critical for understanding and controlling the transformation process from open pores to closed pores.These innovative perspectives are strategically designed to accelerate the commercialization of HC,thereby catalyzing the sustainable and high-efficiency development of SIBs. 展开更多
关键词 Hard carbon Closed pores ANODE Sodium-ion batteries High energy density
在线阅读 下载PDF
Construction of an adsorption-diffusion model reveals the conversion-deposition process of polysulfides
11
作者 Wenhao Yang Dan You +7 位作者 Zhicong Ni Yongshun Liang Yingjie Zhang Yunxiao Wang Qingsong Liu Xue Li Yiyong Zhang Jiajun Wang 《Green Energy & Environment》 2025年第9期1911-1921,共11页
Despite progress in suppressing polysulfide shuttling,this challenge persists in lithium-sulfur battery commercialization.While existing strategies emphasize polysulfide adsorption and catalytic conversion,the critica... Despite progress in suppressing polysulfide shuttling,this challenge persists in lithium-sulfur battery commercialization.While existing strategies emphasize polysulfide adsorption and catalytic conversion,the critical role of diffusion kinetics in conversion–deposition processes remains underexplored.We design an MXene-based array architecture integrating 2D structural advantages and strong polysulfide affinity to regulate diffusion pathways.Combined experimental and multiscale computational studies reveal diffusion-mediated conversion-deposition dynamics.The sodium alginate-constructed MXene array enables three synergistic mechanisms:(1)Enhanced ion/electron delocalization reduces diffusion barriers,(2)Continuous ion transport channels facilitate charge transfer,and(3)Exposed polar surfaces promote polysulfide aggregation/conversion.Synchrotron X-ray tomography coupled with comprehensive electrochemical analyses reveals distinct mechanistic differences between conversion and deposition processes arising from diffusion heterogeneity.In situ characterization techniques combined with DFT simulation calculations demonstrate that diffusion kinetics exerts differential regulatory effects on these coupled electrochemical processes,exhibiting particular sensitivity toward the deposition mechanism.This work provides fundamental insights that reshape our understanding of diffusion-mediated phase transformation in complex multi-step electrochemical systems,offering new perspectives for advanced electrode architecture design in next-generation energy storage technologies. 展开更多
关键词 Lithium-sulfur battery DIFFUSION Conversion-deposition Closed loop effect
在线阅读 下载PDF
Compact Filling Effect and Property Evolution Law of Cement-Recycled Brick Powder Cementitious Material System
12
作者 XUE Cuizhen WANG Ning +3 位作者 WANG Zhe QIAO Hongxia ZHANG Yunsheng SU Li 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1418-1433,共16页
In order to improve the efficient and high-value recycling utilization rate of waste red bricks from construction waste,this study crushed and ground the waste red bricks to produce recycled brick powder(RBP)with diff... In order to improve the efficient and high-value recycling utilization rate of waste red bricks from construction waste,this study crushed and ground the waste red bricks to produce recycled brick powder(RBP)with different fineness,used the Andreasen model to explore the influence of RBP on the compact filling effect of cementitious material system based on the basic characteristics of RBP.The influence of grinding time(10,20,30 min)and content(0%,5%,10%,15%,20%)of RBP on the macroscopic mechanical properties of cementitious materials was investigated.We analyzed the significant impact of RBP particle characteristics on the compressive strength of the specimen with the aid of grey entropy theory,and revealed the influence mechanism of RBP on the microstructure of cementitious materials by scanning electron microscope(SEM)and nuclear magnetic resonance(NMR).The results show that the fineness of RBP after grinding is smaller than that of cement.The fineness of recycled brick powder increases gradually with the extension of grinding time,which is manifested as the increase of<3μm particles and the decrease of>18μm particles.Compared with the unitary cement cementitious material system,the particle gradation of the RBP-cement binary cementitious material system is closer to the closest packing state.With the increase of RBP content and grinding time,the compactness of the binary cementitious system gradually decreases,indicating that the incorporation of RBP reduces the mechanical strength of the specimen.The results of grey entropy show that the specific surface area D(0.1)and<45μm particles are the significant factors affecting the mechanical properties of cementitious materials mixed with RBP.RBP mainly affects the macroscopic properties of cementitious materials by affecting the internal compactness,the number of hydration products and the pore structure.The results of SEM show that when the RBP content is less than 15%,the content of C-S-H in cement paste increase,and the content of Ca(OH)2 decreases,and the content of C-S-H decreases and the content of Ca(OH)2 increases when the RBP content is more than 15%.The NMR results show that with the extension of grinding time,the pore size of micropore increases gradually,that of middle-small pores decreases gradually,and that of large pores remains unchanged.With the increase of RBP content,the micropores first decrease and then increase,and the middle-small pores and large pores gradually decrease.In summary,the compactness of cementitious material system can be improved by adjusting the fineness of RBP.Considering the performance of cementitious materials and the utilization rate of RBP,it is recommended that the grinding time of RBP is 20 min and the content is 10%-15%. 展开更多
关键词 recycle brick powder particle gradation close packing mechanical properties MICRO-STRUCTURE pore structure
原文传递
Loading effects of unsaturated loess considering the influence of closed gas phase
13
作者 Biao Qin Xi'an Li +2 位作者 Li Wang Hao Chai Qian Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2416-2432,共17页
Loess is susceptible to loading effects such as significant changes in strength and volume variation caused by loading and wetting.In this study,considering the different connection states of pore water and gas in loe... Loess is susceptible to loading effects such as significant changes in strength and volume variation caused by loading and wetting.In this study,considering the different connection states of pore water and gas in loess fabric,the gas phase closure case is incorporated into a unified form of the generalized effective stress framework,introducing a damage parameter considering the effects of closed pore gas.The loading effects of unsaturated loess under wide variations in saturation are described in a unified way,and the model performance is verified by corresponding stress and hydraulic path tests.The results indicated that the collapse response involves the initial void ratio of loess,and the coupled outwards motion of the loading-collapse(LC)yield surface under loading enhances its structural strength.Suction-enhanced yield stress requires a greater"tensile stress"to counteract its structural stability.The nucleation of bubbles at high saturation causes a decrease in yield stress.The loading effect exhibits a smaller collapse behavior when the influence of closed gas is considered,whereas the suction path does not cross the LC in the stress space under hydraulic action for the same parameters,which amplifies the influence of closed gas on loess deformation. 展开更多
关键词 Unsaturated loess Closed gas Generalized effective stress Loading effect Constitutive model
在线阅读 下载PDF
Study on the effects of combustion characteristics of pyrotechnic charges on pyrotechnic shocks
14
作者 Jingcheng Wang Shihui Xiong +2 位作者 Huina Mu Xiaogang Li Yuquan Wen 《Defence Technology(防务技术)》 2025年第4期79-98,共20页
This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and sil... This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and silicon-based delay compositions,using thermodynamic software.A multiphase flowthermal-solid coupling model was established,and the combustion process of the pyrotechnic charges within a closed bomb was simulated.The pyrotechnic shock generated by combustion was predicted.The combustion pressures and pyrotechnic shocks were measured.The simulation results demonstrated good agreement with experimental results.Additionally,the mechanism of shock generation by the combustion of pyrotechnic charges in the closed bomb was analyzed.The effects of the combustion characteristics of the pyrotechnic charges on the resulting pyrotechnic shocks were systematically investigated.Notably,the shock response spectrum of the gas-generating pyrotechnic charges is greater than that of the micro gas compositions at most frequencies,particularly in the mid-field pyrotechnic shocks(3-10 kHz).Furthermore,the pyrotechnic shocks increase approximately linearly with the impulse of the gas-generating pyrotechnic charges. 展开更多
关键词 Pyrotechnic charges Pyroshock Closed bomb tests Combustion characteristics Multiphase flow-thermal-solid coupling
在线阅读 下载PDF
The effect of a closed back cavity on air-coupled piezoelectric micromachined ultrasonic transducer performance
15
作者 Yi Gong Miaojie Liu +4 位作者 Shaobo Gong Quanning Li Xuejiao Chen Wei Pang Menglun Zhang 《Nanotechnology and Precision Engineering》 2025年第3期8-17,共10页
In conventional piezoelectric micromachined ultrasonic transducers(PMUTs),the backside acoustic energy is often used inefficiently,resulting in up to half of the energy being wasted.Vacuum encapsulation can improve th... In conventional piezoelectric micromachined ultrasonic transducers(PMUTs),the backside acoustic energy is often used inefficiently,resulting in up to half of the energy being wasted.Vacuum encapsulation can improve the energy utilization efficiency,but this technique is not compatible with state-of-the-art devices such as cantilever-based PMUTs.A closed back cavity provides an alternative method for effectively utilizing the backside acoustic energy.This paper investigates the effects of a closed back cavity on PMUT performance through theoretical analysis,simulations,and experimental verification.Increasing the cavity depth produces a periodic modulation of several key PMUT metrics,such as the relative frequency deviation and quality factor.The optimal cavity depth for PMUTs that ensures a robust resonant frequency and high quality factor is defined as a function of the acoustic wavelength.A closed back cavity also provides an effective method for continuously tuning the quality factor,and thus the bandwidth,of PMUTs.This work paves the way for air-coupled PMUTs with adjustable performance for various applications. 展开更多
关键词 Closed back cavity Cavity resonance Air-coupled PMUTs Performance tuning
在线阅读 下载PDF
Pressure-induced band gap closing of lead-free halide double perovskite(CH_(3)NH_(3))_(2)PtI_(6)
16
作者 Siyu Hou Jiaxiang Wang +2 位作者 Yijia Huang Ruijing Fu Lingrui Wang 《Chinese Physics B》 2025年第8期228-232,共5页
Lead-free halide double perovskites have recently attracted significant attention due to their exceptional stability and favorable band gaps,making them promising candidates for solar cell applications.However,the rel... Lead-free halide double perovskites have recently attracted significant attention due to their exceptional stability and favorable band gaps,making them promising candidates for solar cell applications.However,the relationship between their structural characteristics and intrinsic band gap remains under-explored.This study presents a method to investigate the structure-band gap correlation in a typical halide double perovskite,MA_(2)Pt_(6)(MA^(+)=CH_(3)NH_(3)^(+)),using high pressure techniques.The band gap of MA_(2)PtI_(6)is effectively reduced at two different rates of 0.063 eV/GPa and 0.079 eV/GPa before and after 1.2 GPa,and progressively closes as pressure further increases.These optical changes are closely related to the pressure induced structural evolution of MA_(2)PtI_(6).Moreover,a phase transition from trigonal(R-3m)to monoclinic(P2/m)occurs at 1.2 GPa and completes by 2.0 GPa,driven by pressure-induced distortion of the[PtI_(6)]^(2-)octahedra,which is responsible for the variation of the band gap.These promising findings pave the way for potential applications in the structural and band gap tuning of halide double perovskites. 展开更多
关键词 halide double perovskites high pressure band gap closing phase transition
原文传递
Thermal and solutal Marangoni convection in three-layered viscous flows:Insights for liquid metal battery optimization
17
作者 SHAHEEN Sidra HUANG Hu-lin +2 位作者 ARAIN Muhammad Bilal BHATTI Muhammad Mubashir KHALIQUE Chaudry Masood 《Journal of Central South University》 2025年第6期2087-2100,共14页
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc... This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions. 展开更多
关键词 viscous fluid three-layered closed geometries electrical conductivity thermal convection solutal convection mass diffusivity homotopy perturbation methods
在线阅读 下载PDF
Introducing and analyzing a periodic pipe-in-pipe model for broadband ultra-low-frequency vibration reduction in fluid-conveying pipes
18
作者 Mohammad Hajhosseini 《Acta Mechanica Sinica》 2025年第3期170-180,共11页
A new model of periodic structure is proposed and analyzed.This structure is composed of an inner fluid-conveying pipe with periodic material arrangement carrying periodic arrays of outer cantilever pipes.The generali... A new model of periodic structure is proposed and analyzed.This structure is composed of an inner fluid-conveying pipe with periodic material arrangement carrying periodic arrays of outer cantilever pipes.The generalized differential quadrature rule(GDQR)method combined with the Bloch theorem is used to calculate the vibration band gaps of the structure.Results are verified by the forced vibration responses obtained using the GDQR method.Results indicate that the first two band gaps of the fluid-conveying pipe with periodic material arrangement can get close to each other and move to low frequency regions by changing the length of cantilever pipes.For high fluid velocity values in which the first band gap starts from zero frequency,since the second band is very close to the first band,this periodic structure can be used for vibration reduction over a wide band gap starting from zero frequency.Based on these results,it can be concluded that instead of increasing the total size of the periodic structure,these periodic arrays of cantilever pipes can be implemented to create a wide ultra-low-frequency band gap.Finally,verification of the GDQR method shows that it can be used as a precise numerical method for vibration analysis of the structures such as fluid-conveying pipes and moving belts. 展开更多
关键词 Fluid-conveying pipe Vibration band gap Ultra-low-frequency band gap Close band gaps GDQR method
原文传递
Triple procedure for management of traumatic aphakia,glaucoma and mydriasis
19
作者 Bin Chen Yan-Ting Li Yun-Feng Lu 《International Journal of Ophthalmology(English edition)》 2025年第8期1603-1605,共3页
Dear Editor,We report a relatively safe and effective triple procedure for traumatic aphakia,glaucoma,and mydriasis.Blunt eye trauma can lead to various anterior-and posterior-segment conditions[1],that often occur si... Dear Editor,We report a relatively safe and effective triple procedure for traumatic aphakia,glaucoma,and mydriasis.Blunt eye trauma can lead to various anterior-and posterior-segment conditions[1],that often occur simultaneously.Closed-globe injuries can damage one or more ocular structures. 展开更多
关键词 GLAUCOMA traumatic aphakia closed globe injuries MYDRIASIS triple procedure anterior segment conditions ocular structures posterior segment conditions
原文传递
Genomic evidence of hybridization between two species of Penduline Tits reveals postzygotic reproductive isolation
20
作者 Hui Wang Mansour Aliabadian +1 位作者 Zhengwang Zhang De Chen 《Avian Research》 2025年第3期517-518,共2页
The biological species concept defines species as groups of actually or potentially interbreeding natural populations that are reproductively isolated from other such groups(Mayr,1942).Reproductive isolation,whether p... The biological species concept defines species as groups of actually or potentially interbreeding natural populations that are reproductively isolated from other such groups(Mayr,1942).Reproductive isolation,whether prezygotic or postzygotic,plays a central role in maintaining species boundaries.However,hybridization between closely related taxa can challenge these boundaries and provide insight into speciation,gene flow,and evolutionary processes(Coyne and Orr,2004). 展开更多
关键词 postzygotic reproductive isolation closely related taxa HYBRIDIZATION genomic evidence reproductive isolation SPECIATION biological species concept gene flow
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部