The Fourth Industrial Revolution has endowed the concept of state sovereignty with new era-specific connotations,leading to the emergence of the theory of data sovereignty.While countries refine their domestic legisla...The Fourth Industrial Revolution has endowed the concept of state sovereignty with new era-specific connotations,leading to the emergence of the theory of data sovereignty.While countries refine their domestic legislation to establish their data sovereignty,they are also actively engaging in the negotiation of cross-border data flow rules within international trade agreements to construct data sovereignty.During these negotiations,countries express differing regulatory claims,with some focusing on safeguarding sovereignty and protecting human rights,some prioritizing economic promotion and security assurance,and others targeting traditional and innovative digital trade barriers.These varied approaches reflect the tension between three pairs of values:collectivism and individualism,freedom and security,and tradition and innovation.Based on their distinct value pursuits,three representative models of data sovereignty construction have emerged globally.At the current juncture,when international rules for digital trade are still in their nascent stages,China should timely establish its data sovereignty rules,actively participate in global data sovereignty competition,and balance its sovereignty interests with other interests.Specifically,China should explore the scope of system-acceptable digital trade barriers through free trade zones;integrate domestic and international legal frameworks to ensure the alignment of China’s data governance legislation with its obligations under international trade agreements;and use the development of the“Digital Silk Road”as a starting point to prioritize the formation of digital trade rules with countries participating in the Belt and Road Initiative,promoting the Chinese solutions internationally.展开更多
Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a sign...Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a significant challenge to maintaining prediction precision.This study introduces REPTF-TMDI,a novel method that combines a Reduced Error Pruning Tree Forest(REPTree Forest)with a newly proposed Time-based Missing Data Imputation(TMDI)approach.The REP Tree Forest,an ensemble learning approach,is tailored for time-related traffic data to enhance predictive accuracy and support the evolution of sustainable urbanmobility solutions.Meanwhile,the TMDI approach exploits temporal patterns to estimate missing values reliably whenever empty fields are encountered.The proposed method was evaluated using hourly traffic flow data from a major U.S.roadway spanning 2012-2018,incorporating temporal features(e.g.,hour,day,month,year,weekday),holiday indicator,and weather conditions(temperature,rain,snow,and cloud coverage).Experimental results demonstrated that the REPTF-TMDI method outperformed conventional imputation techniques across various missing data ratios by achieving an average 11.76%improvement in terms of correlation coefficient(R).Furthermore,REPTree Forest achieved improvements of 68.62%in RMSE and 70.52%in MAE compared to existing state-of-the-art models.These findings highlight the method’s ability to significantly boost traffic flow prediction accuracy,even in the presence of missing data,thereby contributing to the broader objectives of sustainable urban transportation systems.展开更多
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n...Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy.展开更多
Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important ...Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important component of debris flows and is the most active factor when debris flows oc- cur. Rainfall also determines the temporal and spatial distribution characteristics of the hazards. A reasonable rainfall threshold target is essential to ensuring the accuracy of debris flow pre-warning. Such a threshold is important for the study of the mechanisms of debris flow formation, predicting the characteristics of future activities and the design of prevention and engineering control measures. Most mountainous areas have little data regarding rainfall and hazards, especially in debris flow forming re- gions. Therefore, both the traditional demonstration method and frequency calculated method cannot satisfy the debris flow pre-warning requirements. This study presents the characteristics of pre-warning regions, included the rainfall, hydrologic and topographic conditions. An analogous area with abundant data and the same conditions as the pre-warning region was selected, and the rainfall threshold was calculated by proxy. This method resolved the problem of debris flow pre-warning in ar- eas lacking data and provided a new approach for debris flow pre-warning in mountainous areas.展开更多
Deep learning has been probed for the airfoil performance prediction in recent years.Compared with the expensive CFD simulations and wind tunnel experiments,deep learning models can be leveraged to somewhat mitigate s...Deep learning has been probed for the airfoil performance prediction in recent years.Compared with the expensive CFD simulations and wind tunnel experiments,deep learning models can be leveraged to somewhat mitigate such expenses with proper means.Nevertheless,effective training of the data-driven models in deep learning severely hinges on the data in diversity and quantity.In this paper,we present a novel data augmented Generative Adversarial Network(GAN),daGAN,for rapid and accurate flow filed prediction,allowing the adaption to the task with sparse data.The presented approach consists of two modules,pre-training module and fine-tuning module.The pre-training module utilizes a conditional GAN(cGAN)to preliminarily estimate the distribution of the training data.In the fine-tuning module,we propose a novel adversarial architecture with two generators one of which fulfils a promising data augmentation operation,so that the complement data is adequately incorporated to boost the generalization of the model.We use numerical simulation data to verify the generalization of daGAN on airfoils and flow conditions with sparse training data.The results show that daGAN is a promising tool for rapid and accurate evaluation of detailed flow field without the requirement for big training data.展开更多
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar...Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction.展开更多
A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler...A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.展开更多
Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it...Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it difficult to identify and predict the distribution patterns of the main gas reservoir, and have seriously hindered further exploration and development of the gas field. Therefore, making full use of the available seismic data is extremely important for predicting the spatial distribution of sedimentary microfacies when constructing three-dimensional reservoir models. A suitable reservoir modeling strategy or workflow controlled by sedimentary microfacies and seismic data has been developed. Five types of seismic attributes were selected to correlate with the sand percentage, and the root mean square (RMS) amplitude performed the best. The relation between the RMS amplitude and the sand percentage was used to construct a reservoir sand distribution map. Three types of main sedimentary microfacies were identified: debris channels, fan lobes, and natural levees. Using constraints from the sedimentary microfacies boundaries, a sedimentary microfacies model was constructed using the sequential indicator and assigned value simulation methods. Finally, reservoir models of physical properties for sandy debris flow deposits controlled by sedimentary microfacies and seismic inversion data were established. Property cutoff values were adopted because the sedimentary microfacies and the reservoir properties from well-logging interpretation are intrinsically different. Selection of appropriate reservoir property cutoffs is a key step in reservoir modeling when using simulation methods based on sedimentary microfacies control. When the abnormal data are truncated and the reservoir properties probability distribution fits a normal distribution, microfacies-controlled reservoir property models are more reliable than those obtained from the sequence Gauss simulation method. The cutoffs for effective porosity of the debris channel, fan lobe, and natural levee facies were 0.2, 0.09, and 0.12, respectively; the corresponding average effective porosities were 0.24, 0.13, and 0.15. The proposed modeling method makes full use of seismic attributes and seismic inversion data, and also makes the property data of single-well depositional microfacies more conformable to a normal distribution with geological significance. Thus, the method allows use of more reliable input data when we construct a model of a sandy debris flow.展开更多
Ultra-compact serpentine inlet faces serve inlet-engine compatibility issues due to flow distortion.To ensure inlet-engine compatibility over a wide range of Mach number,novel active flow control techniques with the a...Ultra-compact serpentine inlet faces serve inlet-engine compatibility issues due to flow distortion.To ensure inlet-engine compatibility over a wide range of Mach number,novel active flow control techniques with the ability of being opened or adjusted as needed draw many attentions in recent years.In this paper,a feedback control system was developed based on the method of microjet blowing.The proposed system includes a pressure adjusting valve to adjust the control effort,a dynamic pressure sensor to sense the inlet distortion intensity,a signal processing instrument to calculate the Root-Mean-Squared(RMS)pressure,and a controller to implement feedback control.To achieve high quality closed-loop controls at dynamic conditions,a novel nondimensional feedback method was developed.The advantage of this nondimensional method was validated at both off-design and arbitrarily changing Mach number conditions.With a sectional PI control law,the RMS control error reduced more than 56%at arbitrary changing conditions.Works in this paper also showed that the dynamics of this nondimensional system can be simplified as a stable second-order overdamped system.展开更多
Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to ana...Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality.展开更多
Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flo...Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%.展开更多
The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flo...The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.展开更多
With its high repeatability,the airgun source has been used to monitor the temporal variations of subsurface structures. However,under different working conditions,there will be subtle differences in the airgun source...With its high repeatability,the airgun source has been used to monitor the temporal variations of subsurface structures. However,under different working conditions,there will be subtle differences in the airgun source signals. To some extent,deconvolution can eliminate changes of the recorded signals due to source variations. Generally speaking,in order to remove the airgun source wavelet signal and obtain the Green's functions between the airgun source and stations,we need to select an appropriate method to perform the deconvolution process for seismic waveform data. Frequency domain water level deconvolution and time domain iterative deconvolution are two kinds of deconvolution methods widely used in the field of receiver functions,etc. We use the Binchuan( in Yunnan Province,China) airgun data as an example to compare the performance of these two deconvolution methods in airgun source data processing. The results indicate that frequency domain water level deconvolution is better in terms of computational efficiency;time domain iterative deconvolution is better in terms of the signal-to-noise ratio( SNR),and the initial motion of P-wave is also clearer. We further discuss the sequence issue of deconvolution and stack for multiple-shot airgun data processing. Finally,we propose a general processing flow for the airgun source data to extract the Green 's functions between the airgun source and stations.展开更多
This paper proposes a method of data-flow testing for Web services composition.Firstly,to facilitate data flow analysis and constraints collecting,the existing model representation of business process execution langua...This paper proposes a method of data-flow testing for Web services composition.Firstly,to facilitate data flow analysis and constraints collecting,the existing model representation of business process execution language(BPEL)is modified in company with the analysis of data dependency and an exact representation of dead path elimination(DPE)is proposed,which over-comes the difficulties brought to dataflow analysis.Then defining and using information based on data flow rules is collected by parsing BPEL and Web services description language(WSDL)documents and the def-use annotated control flow graph is created.Based on this model,data-flow anomalies which indicate potential errors can be discovered by traversing the paths of graph,and all-du-paths used in dynamic data flow testing for Web services composition are automatically generated,then testers can design the test cases according to the collected constraints for each path selected.展开更多
Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used ...Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used to mine the semantics of OD flows.In this paper,we firstly construct and analyze a complex network of OD flows based on large-scale GPS taxi traces of a city in China.The spatiotemporal analysis for the OD flows complex network showed that there were distinctive patterns in OD flows.Then based on a novel complex network model,a semantics mining method of OD flows is proposed through compounding Points of Interests(POI)network and public transport network to the OD flows network.The propose method would offer a novel way to predict the location characteristic and future traffic conditions accurately.展开更多
Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at hig...Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and side-stream smoke. Our laboratory monitors six urinary VNAs—N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)—using isotope dilution GC-MS/ MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR<sup>TM</sup> and Caliper Staccato<sup>TM</sup> workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle.展开更多
In order to guarantee the correctness of business processes, not only control-flow errors but also data-flow errors should be considered. The control-flow errors mainly focus on deadlock, livelock, soundness, and so o...In order to guarantee the correctness of business processes, not only control-flow errors but also data-flow errors should be considered. The control-flow errors mainly focus on deadlock, livelock, soundness, and so on. However, there are not too many methods for detecting data-flow errors. This paper defines Petri nets with data operations(PN-DO) that can model the operations on data such as read, write and delete. Based on PN-DO, we define some data-flow errors in this paper. We construct a reachability graph with data operations for each PN-DO, and then propose a method to reduce the reachability graph. Based on the reduced reachability graph, data-flow errors can be detected rapidly. A case study is given to illustrate the effectiveness of our methods.展开更多
基金This paper is a phased result of the“Research on the Issue of China’s Data Export System”(24SFB3035)a research project of the Ministry of Justice of China on the construction of the rule of law and the study of legal theories at the ministerial level in 2024.
文摘The Fourth Industrial Revolution has endowed the concept of state sovereignty with new era-specific connotations,leading to the emergence of the theory of data sovereignty.While countries refine their domestic legislation to establish their data sovereignty,they are also actively engaging in the negotiation of cross-border data flow rules within international trade agreements to construct data sovereignty.During these negotiations,countries express differing regulatory claims,with some focusing on safeguarding sovereignty and protecting human rights,some prioritizing economic promotion and security assurance,and others targeting traditional and innovative digital trade barriers.These varied approaches reflect the tension between three pairs of values:collectivism and individualism,freedom and security,and tradition and innovation.Based on their distinct value pursuits,three representative models of data sovereignty construction have emerged globally.At the current juncture,when international rules for digital trade are still in their nascent stages,China should timely establish its data sovereignty rules,actively participate in global data sovereignty competition,and balance its sovereignty interests with other interests.Specifically,China should explore the scope of system-acceptable digital trade barriers through free trade zones;integrate domestic and international legal frameworks to ensure the alignment of China’s data governance legislation with its obligations under international trade agreements;and use the development of the“Digital Silk Road”as a starting point to prioritize the formation of digital trade rules with countries participating in the Belt and Road Initiative,promoting the Chinese solutions internationally.
文摘Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a significant challenge to maintaining prediction precision.This study introduces REPTF-TMDI,a novel method that combines a Reduced Error Pruning Tree Forest(REPTree Forest)with a newly proposed Time-based Missing Data Imputation(TMDI)approach.The REP Tree Forest,an ensemble learning approach,is tailored for time-related traffic data to enhance predictive accuracy and support the evolution of sustainable urbanmobility solutions.Meanwhile,the TMDI approach exploits temporal patterns to estimate missing values reliably whenever empty fields are encountered.The proposed method was evaluated using hourly traffic flow data from a major U.S.roadway spanning 2012-2018,incorporating temporal features(e.g.,hour,day,month,year,weekday),holiday indicator,and weather conditions(temperature,rain,snow,and cloud coverage).Experimental results demonstrated that the REPTF-TMDI method outperformed conventional imputation techniques across various missing data ratios by achieving an average 11.76%improvement in terms of correlation coefficient(R).Furthermore,REPTree Forest achieved improvements of 68.62%in RMSE and 70.52%in MAE compared to existing state-of-the-art models.These findings highlight the method’s ability to significantly boost traffic flow prediction accuracy,even in the presence of missing data,thereby contributing to the broader objectives of sustainable urban transportation systems.
文摘Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy.
基金supported by the National Natural Science Foundation of China(Nos.40830742 and 40901007)
文摘Debris flows are the one type of natural disaster that is most closely associated with hu- man activities. Debris flows are characterized as being widely distributed and frequently activated. Rainfall is an important component of debris flows and is the most active factor when debris flows oc- cur. Rainfall also determines the temporal and spatial distribution characteristics of the hazards. A reasonable rainfall threshold target is essential to ensuring the accuracy of debris flow pre-warning. Such a threshold is important for the study of the mechanisms of debris flow formation, predicting the characteristics of future activities and the design of prevention and engineering control measures. Most mountainous areas have little data regarding rainfall and hazards, especially in debris flow forming re- gions. Therefore, both the traditional demonstration method and frequency calculated method cannot satisfy the debris flow pre-warning requirements. This study presents the characteristics of pre-warning regions, included the rainfall, hydrologic and topographic conditions. An analogous area with abundant data and the same conditions as the pre-warning region was selected, and the rainfall threshold was calculated by proxy. This method resolved the problem of debris flow pre-warning in ar- eas lacking data and provided a new approach for debris flow pre-warning in mountainous areas.
基金supported by the funding of the Key Laboratory of Aerodynamic Noise Control(No.ANCL20190103)the State Key Laboratory of Aerodynamics,China(No.SKLA20180102)+1 种基金the Aeronautical Science Foundation of China(Nos.2018ZA52002,2019ZA052011)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD).
文摘Deep learning has been probed for the airfoil performance prediction in recent years.Compared with the expensive CFD simulations and wind tunnel experiments,deep learning models can be leveraged to somewhat mitigate such expenses with proper means.Nevertheless,effective training of the data-driven models in deep learning severely hinges on the data in diversity and quantity.In this paper,we present a novel data augmented Generative Adversarial Network(GAN),daGAN,for rapid and accurate flow filed prediction,allowing the adaption to the task with sparse data.The presented approach consists of two modules,pre-training module and fine-tuning module.The pre-training module utilizes a conditional GAN(cGAN)to preliminarily estimate the distribution of the training data.In the fine-tuning module,we propose a novel adversarial architecture with two generators one of which fulfils a promising data augmentation operation,so that the complement data is adequately incorporated to boost the generalization of the model.We use numerical simulation data to verify the generalization of daGAN on airfoils and flow conditions with sparse training data.The results show that daGAN is a promising tool for rapid and accurate evaluation of detailed flow field without the requirement for big training data.
基金Project supported by the Program of Humanities and Social Science of the Education Ministry of China(Grant No.20YJA630008)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the K C Wong Magna Fund in Ningbo University,China。
文摘Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction.
基金Supported by the National Natural Science Foundation of China(51406031)
文摘A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.
基金partly supported by the National Natural Science Foundation of China(grants no.41272132 and 41572080)the Fundamental Research Funds for central Universities(grant no.2-9-2013-97)the Major State Science and Technology Research Programs(grants no.2008ZX05056-002-02-01 and 2011ZX05010-001-009)
文摘Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it difficult to identify and predict the distribution patterns of the main gas reservoir, and have seriously hindered further exploration and development of the gas field. Therefore, making full use of the available seismic data is extremely important for predicting the spatial distribution of sedimentary microfacies when constructing three-dimensional reservoir models. A suitable reservoir modeling strategy or workflow controlled by sedimentary microfacies and seismic data has been developed. Five types of seismic attributes were selected to correlate with the sand percentage, and the root mean square (RMS) amplitude performed the best. The relation between the RMS amplitude and the sand percentage was used to construct a reservoir sand distribution map. Three types of main sedimentary microfacies were identified: debris channels, fan lobes, and natural levees. Using constraints from the sedimentary microfacies boundaries, a sedimentary microfacies model was constructed using the sequential indicator and assigned value simulation methods. Finally, reservoir models of physical properties for sandy debris flow deposits controlled by sedimentary microfacies and seismic inversion data were established. Property cutoff values were adopted because the sedimentary microfacies and the reservoir properties from well-logging interpretation are intrinsically different. Selection of appropriate reservoir property cutoffs is a key step in reservoir modeling when using simulation methods based on sedimentary microfacies control. When the abnormal data are truncated and the reservoir properties probability distribution fits a normal distribution, microfacies-controlled reservoir property models are more reliable than those obtained from the sequence Gauss simulation method. The cutoffs for effective porosity of the debris channel, fan lobe, and natural levee facies were 0.2, 0.09, and 0.12, respectively; the corresponding average effective porosities were 0.24, 0.13, and 0.15. The proposed modeling method makes full use of seismic attributes and seismic inversion data, and also makes the property data of single-well depositional microfacies more conformable to a normal distribution with geological significance. Thus, the method allows use of more reliable input data when we construct a model of a sandy debris flow.
基金supported by the National Natural Science Foundation of China (No.11602291)。
文摘Ultra-compact serpentine inlet faces serve inlet-engine compatibility issues due to flow distortion.To ensure inlet-engine compatibility over a wide range of Mach number,novel active flow control techniques with the ability of being opened or adjusted as needed draw many attentions in recent years.In this paper,a feedback control system was developed based on the method of microjet blowing.The proposed system includes a pressure adjusting valve to adjust the control effort,a dynamic pressure sensor to sense the inlet distortion intensity,a signal processing instrument to calculate the Root-Mean-Squared(RMS)pressure,and a controller to implement feedback control.To achieve high quality closed-loop controls at dynamic conditions,a novel nondimensional feedback method was developed.The advantage of this nondimensional method was validated at both off-design and arbitrarily changing Mach number conditions.With a sectional PI control law,the RMS control error reduced more than 56%at arbitrary changing conditions.Works in this paper also showed that the dynamics of this nondimensional system can be simplified as a stable second-order overdamped system.
基金Sponsored by Projects of International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51561135003)Key Project of National Natural Science Foundation of China(Grant No.51338003)
文摘Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality.
基金Supported by Universitas Muhammadiyah Yogyakarta,Indonesia and Asia University,Taiwan.
文摘Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%.
基金support provided by the National Natural Sciences Foundation of China(No.41771419)Student Research Training Program of Southwest Jiaotong University(No.191510,No.182117)。
文摘The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.
基金jointly sponsored by the Special Fund for Earthquake Scientific Research in the Public Welfare of China Earthquake Administration(201508008)the tundamental Research Funds for the Central University(WK2080000053)Academician Chen Yong Workstation Project in Yunnan Province
文摘With its high repeatability,the airgun source has been used to monitor the temporal variations of subsurface structures. However,under different working conditions,there will be subtle differences in the airgun source signals. To some extent,deconvolution can eliminate changes of the recorded signals due to source variations. Generally speaking,in order to remove the airgun source wavelet signal and obtain the Green's functions between the airgun source and stations,we need to select an appropriate method to perform the deconvolution process for seismic waveform data. Frequency domain water level deconvolution and time domain iterative deconvolution are two kinds of deconvolution methods widely used in the field of receiver functions,etc. We use the Binchuan( in Yunnan Province,China) airgun data as an example to compare the performance of these two deconvolution methods in airgun source data processing. The results indicate that frequency domain water level deconvolution is better in terms of computational efficiency;time domain iterative deconvolution is better in terms of the signal-to-noise ratio( SNR),and the initial motion of P-wave is also clearer. We further discuss the sequence issue of deconvolution and stack for multiple-shot airgun data processing. Finally,we propose a general processing flow for the airgun source data to extract the Green 's functions between the airgun source and stations.
基金the National Natural Science Foundation of China(60425206,60503033)National Basic Research Program of China(973 Program,2002CB312000)Opening Foundation of State Key Laboratory of Software Engineering in Wuhan University
文摘This paper proposes a method of data-flow testing for Web services composition.Firstly,to facilitate data flow analysis and constraints collecting,the existing model representation of business process execution language(BPEL)is modified in company with the analysis of data dependency and an exact representation of dead path elimination(DPE)is proposed,which over-comes the difficulties brought to dataflow analysis.Then defining and using information based on data flow rules is collected by parsing BPEL and Web services description language(WSDL)documents and the def-use annotated control flow graph is created.Based on this model,data-flow anomalies which indicate potential errors can be discovered by traversing the paths of graph,and all-du-paths used in dynamic data flow testing for Web services composition are automatically generated,then testers can design the test cases according to the collected constraints for each path selected.
基金This work is supported by Shandong Provincial Natural Science Foundation,China under Grant No.ZR2017MG011This work is also supported by Key Research and Development Program in Shandong Provincial(2017GGX90103).
文摘Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used to mine the semantics of OD flows.In this paper,we firstly construct and analyze a complex network of OD flows based on large-scale GPS taxi traces of a city in China.The spatiotemporal analysis for the OD flows complex network showed that there were distinctive patterns in OD flows.Then based on a novel complex network model,a semantics mining method of OD flows is proposed through compounding Points of Interests(POI)network and public transport network to the OD flows network.The propose method would offer a novel way to predict the location characteristic and future traffic conditions accurately.
文摘Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and side-stream smoke. Our laboratory monitors six urinary VNAs—N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)—using isotope dilution GC-MS/ MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR<sup>TM</sup> and Caliper Staccato<sup>TM</sup> workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle.
基金supported in part by the National Key R&D Program of China(2017YFB1001804)Shanghai Science and Technology Innovation Action Plan Project(16511100900)
文摘In order to guarantee the correctness of business processes, not only control-flow errors but also data-flow errors should be considered. The control-flow errors mainly focus on deadlock, livelock, soundness, and so on. However, there are not too many methods for detecting data-flow errors. This paper defines Petri nets with data operations(PN-DO) that can model the operations on data such as read, write and delete. Based on PN-DO, we define some data-flow errors in this paper. We construct a reachability graph with data operations for each PN-DO, and then propose a method to reduce the reachability graph. Based on the reduced reachability graph, data-flow errors can be detected rapidly. A case study is given to illustrate the effectiveness of our methods.