Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically...Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically tailored to savanna tree species using close-range photogrammetry(CRP)data and to evaluate its performance against conventional volume equations for stem volume estimation.A dataset of 30 trees across five dominant savanna species was used to fit the taper model,which was validated using a separate dataset of 322 trees from 14 species.The results demonstrated significant improvements in volume estimation accuracy when using the taper equation.At the tree level,the root mean square error(RMSE)decreased by 47%,from 598 to 319 dm^(3),and the mean absolute bias(MAB)by 48%,from 328 to 172 dm3,compared to volume equations.Similarly,at the plot level,RMSE was reduced by 42% and MAB by 40%.The model performed well for species with regular forms.However,species with irregular tapers exhibited higher errors,reflecting the challenges of modeling stem forms of mixed species.The use of CRP proved valuable,providing high-resolution diameter measurements that improved model parameterization.This study underscores the importance of advanced data collection methods for enhancing taper model accuracy and suggests that further species-specific adjustments are needed to improve performance for species with irregular forms.The findings support the broader application of taper equations for improving stem volume estimates in savanna ecosystems,contributing to better forest management and resource monitoring practices.展开更多
[Objective] The aim was to explore the measurement of coordinate parameter by multi-baseline digital close-range photogrammetry system.[Method] The 3-dimensional coordinate of 8-year-old Jujube was measured by using L...[Objective] The aim was to explore the measurement of coordinate parameter by multi-baseline digital close-range photogrammetry system.[Method] The 3-dimensional coordinate of 8-year-old Jujube was measured by using Lensphoto multi-baseline digital close-range photogrammetry system,and through comparing with measured data of Total Station,the error and accuracy of photogrammetry data were analyzed.[Result] The absolute error of X,Y and Z coordinate was 0-0.014,0-0.018 and 0-0.004 m respectively,and the relative error of X,Y and Z coordinate was less than 0.145%.The significance test of pairs for the photogrammetry data and measured data of Total Station indicated that the space coordinate data of stumpage were accurately measured by using the multi-baseline digital close-range photogrammetry method,and the photogrammetry data meet the need of space coordinate measurement for virtual plant growth simulation.[Conclusion] This study had provided theoretical basis for the growth measurement of virtual plant growth simulation.展开更多
The measurement accuracy of the Mobile Mapping System (MMS) is the main problem, which restricts its development and application, so how to calibrate the MMS to improve its measure-ment accuracy has always been a rese...The measurement accuracy of the Mobile Mapping System (MMS) is the main problem, which restricts its development and application, so how to calibrate the MMS to improve its measure-ment accuracy has always been a research hotspot in the industry. This paper proposes a position and attitude calibration method with error correction based on the combination of the feature point and feature surface. First, the initial value of the spatial position relation-ship between each sensor of MMS is obtained by close-range photogrammetry. Second, the optimal solution for error correction is calculated by feature points in global coordinates jointly measured with International GNSS Service (IGS) stations. Then, the final transformation para-meters are solved by combining the initial values obtained originally, thereby realizing the rapid calibration of the MMS. Finally, it analyzed the RMSE of MMS point cloud after calibration, and the results demonstrate the feasibility of the calibration approach proposed by this method. Under the condition of a single measurement sensor accuracy is low, the plane and elevation absolute accuracy of the point cloud after calibration can reach 0.043 m and 0.072 m, respectively, and the relative accuracy is smaller than 0.02 m. It meets the precision require-ments of data acquisition for MMS. It is of great significance for promoting the development of MMS technology and the application of some novel techniques in the future, such as auton-omous driving, digital twin city, urban brain et al.展开更多
Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogra...Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.展开更多
In order to provide the model point accuracy of ±2 mm,an extra high accuracy industrial control net with four surveying piers with accuracy ±0.1 mm was set up around the model.Tens of orientation marks have ...In order to provide the model point accuracy of ±2 mm,an extra high accuracy industrial control net with four surveying piers with accuracy ±0.1 mm was set up around the model.Tens of orientation marks have been placed on the different parts and measured with accuracy ±0.2 mm from the above_mentioned piers.The main four stereopairs taken with the P31 camera around the model are simultaneously processed on the BC2 analytical plotter.The accuracy of absolute orientation is better than ±0.9 mm.Finally,about 300 sections construction drawings have been directly offered,and the close_range photogrammetric data has been used for the design and construction of the statue.展开更多
The wearing course conditions strongly affect road pavements quality in terms of traffic safety and overall functionality.Surface texture can be considered a very strategic aspect to assess road pavement status,in ord...The wearing course conditions strongly affect road pavements quality in terms of traffic safety and overall functionality.Surface texture can be considered a very strategic aspect to assess road pavement status,in order to predict its degradation and to define an effective maintenance program.Nowadays,common texture assessment approaches are mainly empirical and based on in-situ and/or laboratory direct measurements,thus the quantity and quality of the obtainable information are limited.On the other hand,advanced contactless techniques require expensive and often complicated equipment that can be hardly used in common applications.In this regard,a low budget close-range photogrammetry technique for road pavements 3D surface texture analysis is here proposed.14 areal texture parameters including depth,volume,distribution and feature indicators have been determined by analysing the 3D models.The outcomes have been compared with those found with the traditional volumetric patch and pendulum tests,and a complete pairwise correlation matrix has been obtained.Volume patch test exhibits a high relationship with different volume and height surface texture parameters,while lowcorrelations have been found comparing pendulum test with the intrinsic and statistical indicators.The results and their relationships have been commented in-depth along with proposed further research activities.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
In order to research the possibility of digital close-range photogrammetric surveying in small scale physical simulation experiment, physical model coinciding with engineering practice was constructed based on similar...In order to research the possibility of digital close-range photogrammetric surveying in small scale physical simulation experiment, physical model coinciding with engineering practice was constructed based on similar theory. The datum processing method and surveying precision of digital close-range photogrammetric were analyzed. And the function relationship between overburden subsidence factor qr and the ratio z/H of stratum horizon z and mining depth H was researched. The results show that surveying points position mean error along horizontal direction is ±0.131 mm and vertical direction is ±0.192 mm. Therefore, multi-taking station cross direction digital close-range photogrammetric can completely satisfy the precision need of physical simulation experiment. And the empirical formula can be utilized to represent evolution law of stratum subsidence factor.展开更多
The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.Thi...The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.This allows estimates of the characteristics of asteroid 2016HO_(3),the target of the first Chinese asteroid exploration mission,Tianwen 2.We obtain 80 characteristic parameters in 9 categories and analyze their impacts on the mission.By comparing three close-range exploration modes,we provide advantages and disadvantages of each,and propose suitable methods for the exploration of 2016HO_(3).Owing to the weak gravity and small size of 2016HO_(3),a combination of multiple hovering positions and active orbiting is recommended for scientific exploration.展开更多
This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknow...This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme.展开更多
The performance of multilayered thin steel plates subjected to close-range air blasts has been experimentally studied and compared with that of monolithic plates made of the same material and having equal mass. In pre...The performance of multilayered thin steel plates subjected to close-range air blasts has been experimentally studied and compared with that of monolithic plates made of the same material and having equal mass. In present experiments, multilayered plates are in-contact four-layered thin steel plates and two types of deformation/failure modes were observed for them. Comparisons concerning deformation/failure modes, strain distributions and energy absorptions between the multilayered plate and its monolithic counterpart were conducted. It is found that the multilayered plate is much superior to its monolithic counterpart in the ability to deform against blast loading. Furthermore, under intense airblast loading, the multilayered plate can not only absorb much more energy but also effectively reduce the secondary destruction ability of structural fragments in comparison with its monolithic counterpart.展开更多
Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed...Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.展开更多
In order to improve the accuracy of the photogrammetric joint roughness coefficient(JRC)value,the present study proposed a novel method combining an autonomous shooting parameter selection algorithm with a composite e...In order to improve the accuracy of the photogrammetric joint roughness coefficient(JRC)value,the present study proposed a novel method combining an autonomous shooting parameter selection algorithm with a composite error model.Firstly,according to the depth map-based photogrammetric theory,the estimation of JRC from a three-dimensional(3D)digital surface model of rock discontinuities was presented.Secondly,an automatic shooting parameter selection algorithm was novelly proposed to establish the 3D model dataset of rock discontinuities with varying shooting parameters and target sizes.Meanwhile,the photogrammetric tests were performed with custom-built equipment capable of adjusting baseline lengths,and a total of 36 sets of JRC data was gathered via a combination of laboratory and field tests.Then,by combining the theory of point cloud coordinate computation error with the equation of JRC calculation,a composite error model controlled by the shooting parameters was proposed.This newly proposed model was validated via the 3D model dataset,demonstrating the capability to correct initially obtained JRC values solely based on shooting parameters.Furthermore,the implementation of this correction can significantly reduce errors in JRC values obtained via photographic measurement.Subsequently,our proposed error model was integrated into the shooting parameter selection algorithm,thus improving the rationality and convenience of selecting suitable shooting parameter combinations when dealing with target rock masses with different sizes.Moreover,the optimal combination of three shooting parameters was offered.JRC values resulting from various combinations of shooting parameters were verified by comparing them with 3D laser scan data.Finally,the application scope and limitations of the newly proposed approach were further addressed.展开更多
0 INTRODUCTION Rock masses are inherently discontinuous,with fractures and joints governing their mechanical behavior and stability(Liu et al.,2024;Shang et al.,2018;Lisjak and Grasselli,2014;Scholtès and Donz...0 INTRODUCTION Rock masses are inherently discontinuous,with fractures and joints governing their mechanical behavior and stability(Liu et al.,2024;Shang et al.,2018;Lisjak and Grasselli,2014;Scholtès and Donzé,2012;Jiang et al.,2009;Pine et al.,2006;Aydan et al.,1989).展开更多
This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering a...This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering applications, such as infrastructure monitoring and heritage preservation. Using a high-resolution UAV with a 20 MP (MegaPixels) sensor, four images of a brick wall test field were captured and processed in Agisoft Metashape, with resolutions compared against Leica T2002 theodolite measurements (1.0 mm accuracy). Advanced statistical methods (ANOVA (analysis of variance), Tukey tests, Monte Carlo simulations) and ground control points validated the results. Accuracy improved from 25 mm at 50 PPI to 5 mm at 150 PPI (p < 0.01), plateauing at 4 mm beyond 200 PPI, while 150 PPI reduced processing time by 62% compared to 300 PPI. Unlike prior studies, this research uniquely isolates resolution effects in a controlled civil engineering context, offering a novel 150 PPI threshold that balances precision and efficiency. This threshold supports Saudi Vision 2030’s smart infrastructure goals for megaprojects like NEOM, providing a scalable framework for global applications. Future research should leverage deep learning to optimize resolutions in dynamic environments.展开更多
The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
Close-range photogrammetry is to determine the shape and size of the object, instead of it's absolute position. Therefore, at first, any translation and rotation of the photogrammetric model of the object caused b...Close-range photogrammetry is to determine the shape and size of the object, instead of it's absolute position. Therefore, at first, any translation and rotation of the photogrammetric model of the object caused by whole geodesic, photographic and photogrammetric procedures in close-range photogrammetry could not be considered. However, it is necessary to analyze all the reasons which cause the deformations of the shape and size and to present their corresponding theories and equations. This situation, of course, is very different from the conventional topophotogrammetry. In this paper some specific characters of limit errors in close-range photogrammetry are presented in detail, including limit errors for calibration of interior elements for close-range cameras, the limit errors of relative and absolute orientations in close-range cameras, the limit errors of relative and absolute orientations in close-range photogrammetric procedures, and the limit errors of control works in close-range photogrammetry. A theoretical equation of calibration accuracy for close-range camerais given. Relating to the three examples in this paper, their theoretical accuracy requirement of interior elements of camera change in the scope of ±(0.005–0.350) mm. This discussion permits us to reduce accuracy requirement in calibration for an object with small relief, but the camera platform is located in violent vibration environment. Another theoretical equation of relative RMS of base lines (m S/S) and the equation RMS of start direction are also presented. It is proved that them S/S could be equal to the relative RMS ofm ΔX/ΔX. It is also proved that the permitting RMS of start direction is much bigger than the traditionally used one. Some useful equations of limit errors in close-range photogrammetry are presented as well. Suggestions mentioned above are perhaps beneficial for increasing efficiency, for reducing production cost.展开更多
基金partially funded by the International Foundation for Science(Grant No:I-1-D-6066-1).
文摘Stem volume estimation is crucial in forest ecology and management,particularly for timber harvesting strategies and carbon stock assessments.This study aimed to develop a variable-exponent taper equation specifically tailored to savanna tree species using close-range photogrammetry(CRP)data and to evaluate its performance against conventional volume equations for stem volume estimation.A dataset of 30 trees across five dominant savanna species was used to fit the taper model,which was validated using a separate dataset of 322 trees from 14 species.The results demonstrated significant improvements in volume estimation accuracy when using the taper equation.At the tree level,the root mean square error(RMSE)decreased by 47%,from 598 to 319 dm^(3),and the mean absolute bias(MAB)by 48%,from 328 to 172 dm3,compared to volume equations.Similarly,at the plot level,RMSE was reduced by 42% and MAB by 40%.The model performed well for species with regular forms.However,species with irregular tapers exhibited higher errors,reflecting the challenges of modeling stem forms of mixed species.The use of CRP proved valuable,providing high-resolution diameter measurements that improved model parameterization.This study underscores the importance of advanced data collection methods for enhancing taper model accuracy and suggests that further species-specific adjustments are needed to improve performance for species with irregular forms.The findings support the broader application of taper equations for improving stem volume estimates in savanna ecosystems,contributing to better forest management and resource monitoring practices.
基金Supported by National Natural Science Foundation of China(30770401)National Eleventh Five-Year Plan for Forestry Scienceand Technology Support Topics(2006BADO3A0505)~~
文摘[Objective] The aim was to explore the measurement of coordinate parameter by multi-baseline digital close-range photogrammetry system.[Method] The 3-dimensional coordinate of 8-year-old Jujube was measured by using Lensphoto multi-baseline digital close-range photogrammetry system,and through comparing with measured data of Total Station,the error and accuracy of photogrammetry data were analyzed.[Result] The absolute error of X,Y and Z coordinate was 0-0.014,0-0.018 and 0-0.004 m respectively,and the relative error of X,Y and Z coordinate was less than 0.145%.The significance test of pairs for the photogrammetry data and measured data of Total Station indicated that the space coordinate data of stumpage were accurately measured by using the multi-baseline digital close-range photogrammetry method,and the photogrammetry data meet the need of space coordinate measurement for virtual plant growth simulation.[Conclusion] This study had provided theoretical basis for the growth measurement of virtual plant growth simulation.
基金This research was funded by the National Natural Science Foundation of China[grant number 41971350 and 41571437]Beijing Advanced Innovation Centre for Future Urban Design Project[grant number UDC2019031724]+4 种基金Teacher Support Program for Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture[grant number JDJQ20200307]State Key Laboratory of Geo-Information Engineering[grant number SKLGIE2019-Z-3-1]Open Research Fund Program of LIESMARS[grant number 19E01]National Key Research and Development Program of China[grant number 2019YFC1520100]The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture[grant number X18050].
文摘The measurement accuracy of the Mobile Mapping System (MMS) is the main problem, which restricts its development and application, so how to calibrate the MMS to improve its measure-ment accuracy has always been a research hotspot in the industry. This paper proposes a position and attitude calibration method with error correction based on the combination of the feature point and feature surface. First, the initial value of the spatial position relation-ship between each sensor of MMS is obtained by close-range photogrammetry. Second, the optimal solution for error correction is calculated by feature points in global coordinates jointly measured with International GNSS Service (IGS) stations. Then, the final transformation para-meters are solved by combining the initial values obtained originally, thereby realizing the rapid calibration of the MMS. Finally, it analyzed the RMSE of MMS point cloud after calibration, and the results demonstrate the feasibility of the calibration approach proposed by this method. Under the condition of a single measurement sensor accuracy is low, the plane and elevation absolute accuracy of the point cloud after calibration can reach 0.043 m and 0.072 m, respectively, and the relative accuracy is smaller than 0.02 m. It meets the precision require-ments of data acquisition for MMS. It is of great significance for promoting the development of MMS technology and the application of some novel techniques in the future, such as auton-omous driving, digital twin city, urban brain et al.
基金the support of the National Natural Science Foundation of China (Grant Nos. 41472272, 41102194)the Key Deployment Project of the Chinese Academy of Sciences (KZZD-EW-05-01)the Science Foundation for Excellent Youth Scholars of Sichuan University (2013SCU04A07)
文摘Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy.
文摘In order to provide the model point accuracy of ±2 mm,an extra high accuracy industrial control net with four surveying piers with accuracy ±0.1 mm was set up around the model.Tens of orientation marks have been placed on the different parts and measured with accuracy ±0.2 mm from the above_mentioned piers.The main four stereopairs taken with the P31 camera around the model are simultaneously processed on the BC2 analytical plotter.The accuracy of absolute orientation is better than ±0.9 mm.Finally,about 300 sections construction drawings have been directly offered,and the close_range photogrammetric data has been used for the design and construction of the statue.
文摘The wearing course conditions strongly affect road pavements quality in terms of traffic safety and overall functionality.Surface texture can be considered a very strategic aspect to assess road pavement status,in order to predict its degradation and to define an effective maintenance program.Nowadays,common texture assessment approaches are mainly empirical and based on in-situ and/or laboratory direct measurements,thus the quantity and quality of the obtainable information are limited.On the other hand,advanced contactless techniques require expensive and often complicated equipment that can be hardly used in common applications.In this regard,a low budget close-range photogrammetry technique for road pavements 3D surface texture analysis is here proposed.14 areal texture parameters including depth,volume,distribution and feature indicators have been determined by analysing the 3D models.The outcomes have been compared with those found with the traditional volumetric patch and pendulum tests,and a complete pairwise correlation matrix has been obtained.Volume patch test exhibits a high relationship with different volume and height surface texture parameters,while lowcorrelations have been found comparing pendulum test with the intrinsic and statistical indicators.The results and their relationships have been commented in-depth along with proposed further research activities.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金Projects(41101520,41071328,51074064)supported by the National Natural Science Foundation of China
文摘In order to research the possibility of digital close-range photogrammetric surveying in small scale physical simulation experiment, physical model coinciding with engineering practice was constructed based on similar theory. The datum processing method and surveying precision of digital close-range photogrammetric were analyzed. And the function relationship between overburden subsidence factor qr and the ratio z/H of stratum horizon z and mining depth H was researched. The results show that surveying points position mean error along horizontal direction is ±0.131 mm and vertical direction is ±0.192 mm. Therefore, multi-taking station cross direction digital close-range photogrammetric can completely satisfy the precision need of physical simulation experiment. And the empirical formula can be utilized to represent evolution law of stratum subsidence factor.
文摘The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.This allows estimates of the characteristics of asteroid 2016HO_(3),the target of the first Chinese asteroid exploration mission,Tianwen 2.We obtain 80 characteristic parameters in 9 categories and analyze their impacts on the mission.By comparing three close-range exploration modes,we provide advantages and disadvantages of each,and propose suitable methods for the exploration of 2016HO_(3).Owing to the weak gravity and small size of 2016HO_(3),a combination of multiple hovering positions and active orbiting is recommended for scientific exploration.
基金This study was co-supported by the National Natural Science Foundation of China(Nos.62003371,62373379,62103446,61273351,62073343)the Outstanding Youth Fund of Hunan Provincial Natural Science,China(No.2022JJ20081)the Innovation Driven Project of Central South University,China(No.2023CXQD066).
文摘This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51179200 and 51209211)the Innovation Research Foundation for Ph. D Candidates of Naval University of Engineering, China (Grant No. HGYJSJJ2012001)
文摘The performance of multilayered thin steel plates subjected to close-range air blasts has been experimentally studied and compared with that of monolithic plates made of the same material and having equal mass. In present experiments, multilayered plates are in-contact four-layered thin steel plates and two types of deformation/failure modes were observed for them. Comparisons concerning deformation/failure modes, strain distributions and energy absorptions between the multilayered plate and its monolithic counterpart were conducted. It is found that the multilayered plate is much superior to its monolithic counterpart in the ability to deform against blast loading. Furthermore, under intense airblast loading, the multilayered plate can not only absorb much more energy but also effectively reduce the secondary destruction ability of structural fragments in comparison with its monolithic counterpart.
文摘Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52225904 and 52039007)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102212207).
文摘In order to improve the accuracy of the photogrammetric joint roughness coefficient(JRC)value,the present study proposed a novel method combining an autonomous shooting parameter selection algorithm with a composite error model.Firstly,according to the depth map-based photogrammetric theory,the estimation of JRC from a three-dimensional(3D)digital surface model of rock discontinuities was presented.Secondly,an automatic shooting parameter selection algorithm was novelly proposed to establish the 3D model dataset of rock discontinuities with varying shooting parameters and target sizes.Meanwhile,the photogrammetric tests were performed with custom-built equipment capable of adjusting baseline lengths,and a total of 36 sets of JRC data was gathered via a combination of laboratory and field tests.Then,by combining the theory of point cloud coordinate computation error with the equation of JRC calculation,a composite error model controlled by the shooting parameters was proposed.This newly proposed model was validated via the 3D model dataset,demonstrating the capability to correct initially obtained JRC values solely based on shooting parameters.Furthermore,the implementation of this correction can significantly reduce errors in JRC values obtained via photographic measurement.Subsequently,our proposed error model was integrated into the shooting parameter selection algorithm,thus improving the rationality and convenience of selecting suitable shooting parameter combinations when dealing with target rock masses with different sizes.Moreover,the optimal combination of three shooting parameters was offered.JRC values resulting from various combinations of shooting parameters were verified by comparing them with 3D laser scan data.Finally,the application scope and limitations of the newly proposed approach were further addressed.
基金supported by the National Key R&D Program of China(No.2022YFC3080200)。
文摘0 INTRODUCTION Rock masses are inherently discontinuous,with fractures and joints governing their mechanical behavior and stability(Liu et al.,2024;Shang et al.,2018;Lisjak and Grasselli,2014;Scholtès and Donzé,2012;Jiang et al.,2009;Pine et al.,2006;Aydan et al.,1989).
文摘This study provides the first systematic evaluation of image resolution’s effect (50-300 PPI, pixels per inch) on UAV (unmanned aerial vehicle)-based digital close-range photogrammetry accuracy in civil engineering applications, such as infrastructure monitoring and heritage preservation. Using a high-resolution UAV with a 20 MP (MegaPixels) sensor, four images of a brick wall test field were captured and processed in Agisoft Metashape, with resolutions compared against Leica T2002 theodolite measurements (1.0 mm accuracy). Advanced statistical methods (ANOVA (analysis of variance), Tukey tests, Monte Carlo simulations) and ground control points validated the results. Accuracy improved from 25 mm at 50 PPI to 5 mm at 150 PPI (p < 0.01), plateauing at 4 mm beyond 200 PPI, while 150 PPI reduced processing time by 62% compared to 300 PPI. Unlike prior studies, this research uniquely isolates resolution effects in a controlled civil engineering context, offering a novel 150 PPI threshold that balances precision and efficiency. This threshold supports Saudi Vision 2030’s smart infrastructure goals for megaprojects like NEOM, providing a scalable framework for global applications. Future research should leverage deep learning to optimize resolutions in dynamic environments.
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
文摘Close-range photogrammetry is to determine the shape and size of the object, instead of it's absolute position. Therefore, at first, any translation and rotation of the photogrammetric model of the object caused by whole geodesic, photographic and photogrammetric procedures in close-range photogrammetry could not be considered. However, it is necessary to analyze all the reasons which cause the deformations of the shape and size and to present their corresponding theories and equations. This situation, of course, is very different from the conventional topophotogrammetry. In this paper some specific characters of limit errors in close-range photogrammetry are presented in detail, including limit errors for calibration of interior elements for close-range cameras, the limit errors of relative and absolute orientations in close-range cameras, the limit errors of relative and absolute orientations in close-range photogrammetric procedures, and the limit errors of control works in close-range photogrammetry. A theoretical equation of calibration accuracy for close-range camerais given. Relating to the three examples in this paper, their theoretical accuracy requirement of interior elements of camera change in the scope of ±(0.005–0.350) mm. This discussion permits us to reduce accuracy requirement in calibration for an object with small relief, but the camera platform is located in violent vibration environment. Another theoretical equation of relative RMS of base lines (m S/S) and the equation RMS of start direction are also presented. It is proved that them S/S could be equal to the relative RMS ofm ΔX/ΔX. It is also proved that the permitting RMS of start direction is much bigger than the traditionally used one. Some useful equations of limit errors in close-range photogrammetry are presented as well. Suggestions mentioned above are perhaps beneficial for increasing efficiency, for reducing production cost.