The impacts of solar activity on climate are explored in this two-part study. Based on the principles of atmospheric dynamics, Part I propose an amplifying mechanism of solar impacts on winter climate extremes through...The impacts of solar activity on climate are explored in this two-part study. Based on the principles of atmospheric dynamics, Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns. This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24, the historical surface temperature data, and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters. For low solar activity, the thermal contrast between the low- and high-latitudes is enhanced, so as the mid-latitude baroclinic ultra-long wave activity. The land-ocean thermal contrast is also enhanced, which amplifies the topographic waves. The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes, making the atmospheric "heat engine" more efficient than normal. The jets shift southward and the polar vortex is weakened. The Northern Annular Mode (NAM) index tends to be negative. The mid-latitude surface exhibits large-scale convergence and updrafts, which favor extreme weather/climate events to occur. The thermally driven Siberian high is enhanced, which enhances the East Asian winter monsoon (EAWM). For high solar activity, the mid-latitude circulation patterns are less wavy with less meridional transport. The NAM tends to be positive, and the Siberian high and the EAWM tend to be weaker than normal. Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity. The solar influence on the mid- to high-latitude surface temperature and circulations can stand out after removing the influence from the E1 Nifio-Southern Oscillation. The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is compared with other external radiative forcings that do not influence the climate in the same way as the sun does.展开更多
Part II of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number u...Part II of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number up to Solar Cycle 24.To explore plausible solar origins of the observed decadal-centennial timescales in the SSTs and climate variability in general,we design a simple one-dimensional dynamical system forced by an annual cycle modulated by a small-amplitude single-or multi-scale"solar activity."Results suggest that nonlinear harmonic and subharmonic resonance of the system to the forcing and period-doubling bifurcations are responsible for the dominant timescales in the system,including the 60-yr timescale that dominates the Atlantic Multidecadal Oscillation.The dominant timescales in the forced system depend on the system's parameter setting.Scale enhancement among the dominant response timescales may result in dramatic amplifications over a few decades and extreme values of the time series on various timescales.Three possible energy sources for such amplifications and extremes are proposed.Dynamical model results suggest that solar activity may play an important yet not well recognized role in the observed decadal-centennial climate variability.The atmospheric dynamical amplifying mechanism shown in Part I and the nonlinear resonant and bifurcation mechanisms shown in Part II help us to understand the solar source of the multi-scale climate change in the 20th century and the fact that different solar influenced dominant timescales for recurrent climate extremes for a given region or a parameter setting.Part II also indicates that solar influences on climate cannot be linearly compared with non-cyclic or sporadic thermal forcings because they cannot exert their influences on climate in the same way as the sun does.展开更多
We apply Singular Spectrum Analysis to four datasets of observed global-mean near-surface temperature from start year to through 2012: HadCRU (to = 1850), NOAA (to = 1880), NASA (to = 1880), and JMA (to = 1891). For e...We apply Singular Spectrum Analysis to four datasets of observed global-mean near-surface temperature from start year to through 2012: HadCRU (to = 1850), NOAA (to = 1880), NASA (to = 1880), and JMA (to = 1891). For each dataset, SSA reveals a trend of increasing temperature and several quasi-periodic oscillations (QPOs). QPOs 1, 2 and 3 are predictable on a year-by-year basis by sine waves with periods/amplitudes of: 1) 62.4 years/0.11°C;2) 20.1 to 21.4 years/0.04°C to 0.05°C;and 3) 9.1 to 9.2 years/0.03°C to 0.04°C. The remainder of the natur°l variability is not predictable on a year-by-year basis. We represent this noise by its 90 percent confidence interval. We combine the predictable and unpredictable natural variability with the temperature changes caused by the 11-year solar cycle and humanity, the latter for both the Reference and Revised-Fair-Plan scenarios for future emissions of greenhouse gases. The resulting temperature departures show that we have moved from the first phase of learning—Ignorance—through the second phase—Uncertainty—and are now entering the third phase—Resolution—when the human-caused signal is much larger than the natural variability. Accordingly, it is now time to transition to the post-fossil-fuel age by phasing out fossil-fuel emissions from 2020 through 2100.展开更多
Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives ...Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.展开更多
Located downstream the Kupang Catchment in Indonesia,Pekalongan faces significant land subsidence issues,leading to severe coastal flooding.This study aimed to assess the impact of climate change on future flow regime...Located downstream the Kupang Catchment in Indonesia,Pekalongan faces significant land subsidence issues,leading to severe coastal flooding.This study aimed to assess the impact of climate change on future flow regimes and hydrological extremes to inform long-term water resources management strategies for the Kupang Catchment.Utilizing precipitation and air temperature data from general circulation models in the Coupled Model Intercomparison Project 6(CMIP6)and employing bias correction techniques,the Soil and Water Assessment Tool(SWAT)hydrological model was employed to analyze climate-induced changes in hydrological fluxes,specifically streamflow.Results indicated a consistent increase in monthly streamflow during the wet season,with a substantial rise of 22.8%,alongside a slight decrease of 18.0%during the dry season.Moreover,both the frequency and severity of extremely low and high flows were projected to intensify by approximately 50%and 70%,respectively,for a 20-year return period,suggesting heightened flood and drought risks in the future.The observed declining trend in low flow,by up to 11%,indicated the potential for long-term groundwater depletion exacerbating the threat of land subsidence and coastal flooding,especially in areas with inadequate surface water management policies and infrastructure.展开更多
Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustaina...Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management.In this study,we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm(Helicoverpa armigera)in the adaptation to local environments and resilience to future climate change.Notably,the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades.Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm.Approximately 19,000 years ago,the cotton bollworm expanded from its ancestral African population,followed by gradual occupations of the European,Asian,Oceanian,and American continents.Furthermore,we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential.Additionally,a large number of candidate genes and SNPs linked to climatic adaptation were mapped.These findings could inform sustainable pest management strategies in the face of climate change,aiding future pest forecasting and management planning.展开更多
Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air poll...Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air pollution is crucial for mitigating climate change,improving air quality,and promoting the sustainable development of food systems.However,the literature lacks a comprehensive review of these interactions,particularly in the current phase of rapid development in the field.To address this gap,this study systematically reviews recent research on the impacts of climate change and air pollution on food systems,as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution.In addition,this study summarizes various strategies for mitigation and adaptation,including adjustments in agricultural practices and food supply chains.Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions.This review offers a critical overview of current research on the interactions among food systems,climate change,and air pollution and highlights future research directions to support the transition to sustainable food systems.展开更多
Aboveground biomass(AGB)and belowground biomass(BGB)are key components of carbon storage,yet their responses to future climate changes remain poorly understood,particularly in China.Understanding these dynamics is ess...Aboveground biomass(AGB)and belowground biomass(BGB)are key components of carbon storage,yet their responses to future climate changes remain poorly understood,particularly in China.Understanding these dynamics is essential for global carbon cycle modeling and ecosystem management.This study integrates field observations,machine learning,and multi-source remote sensing data to reconstruct the distributions of AGB and BGB in China from 2000 to 2020.Then CMIP6 was used to predict the distribution of China under three SSP scenarios(SSP1-1.9,SSP2-4.5,SSP5-8.5)from 2020 to 2100 to fill the existing knowledge gap.The predictive accuracy for AGB(R^(2)=0.85)was significantly higher than for BGB(R^(2)=0.48),likely due to the greater complexity of modeling belowground dynamics.NDVI(Normalized Difference Vegetation Index)and soil organic carbon density(SOC)were identified as the primary drivers of AGB and BGB changes.During 2000-2020,AGB in China remained stable at approximately 10.69 Pg C,while BGB was around 5.06 Pg C.Forest ecosystems contributed 88.52% of AGB and 43.83% of BGB.AGB showed a relatively slow annual increase,while BGB demonstrated a significant annual growth rate of approximately 37 Tg C yr^(−1).Under the low-emission scenario,both AGB and BGB show fluctuations and steady growth,particularly in South China and the northwestern part of Northeast China.Under the moderate-emission scenario,AGB and BGB show significant declines and increases,respectively.In the high-emission scenario,both AGB and BGB decline significantly,particularly in the southwestern and central regions.These results provide valuable insights into ecosystem carbon dynamics under climate change,emphasizing the relatively low responsiveness of AGB and BGB to climatic variability,and offering guidance for sustainable land use and management strategies.展开更多
Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled ...Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled model inter-comparison project phase six(CMIP6)climatic patterns under the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5.The DSSAT-CROPGROCotton model,along with stepwise multiple regression analyses,was used to simulate changes in the potential yield of seed cotton due to climate change.The results show that while future temperatures in the Tarim River Basin will rise significantly,changes in precipitation and radiation during the cotton-growing season are minimal.Seed cotton yields are more sensitive to low temperatures than to precipitation and radiation.The potential yield of seed cotton under the SSP2-4.5 scenario would increase by 14.8%,23.7%,29.0%,and 29.4%in the 2030S,2050S,2070S,and 2090S,respectively.In contrast,under the SSP5-8.5 scenario,the potential yield of seed cotton would see increases of 17.5%,27.1%,30.1%,and 22.6%,respectively.Except for the 2090s under the SSP5-8.5 scenario,future seed cotton production can withstand a 10%to 20%deficit in irrigation.These findings will help develop climate change adaptation strategies for cotton cultivation.展开更多
This past year, 2024, is on track to be the warmest year, joining 2023 as the two hottest years on record. With the exceptional heat, weather and climate extremes were common across the world. In particular, 2024 has ...This past year, 2024, is on track to be the warmest year, joining 2023 as the two hottest years on record. With the exceptional heat, weather and climate extremes were common across the world. In particular, 2024 has seen a remarkable run of extreme precipitation events and resulting impacts. Here, we provide an overview of the most notable extreme events of the year, including extreme precipitation and floods, tropical cyclones, and droughts. The characteristics and impacts of these extreme events are summarized, followed by discussion on the physical drivers and the role of global warming.Finally, we also discuss the future prospects in extreme event studies, including impact-based perspectives, challenges in attribution of precipitation extremes, and the existing gap to minimize impacts from climate extremes.展开更多
As global greenhouse gases continue rising,the urgency of more ambitious action is clearer than ever before.China is the world’s biggest emitter of greenhouse gases and one of the countries affected most by climate c...As global greenhouse gases continue rising,the urgency of more ambitious action is clearer than ever before.China is the world’s biggest emitter of greenhouse gases and one of the countries affected most by climate change.The evidence about the impacts of climate change on the environment and human health may encourage China to take more decisive action to mitigate greenhouse gas emissions and adapt to climate impacts.展开更多
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
The G20 Youth Summit(Y20)took place in Johannesburg,South Africa,from 18 to 23 August.Sun Ruoshui,a research assistant from the Institute of Climate Change and Sustainable Development,Tsinghua University,was appointed...The G20 Youth Summit(Y20)took place in Johannesburg,South Africa,from 18 to 23 August.Sun Ruoshui,a research assistant from the Institute of Climate Change and Sustainable Development,Tsinghua University,was appointed by the All-China Youth Federation to represent China in the discussions on Climate and Environmental Sustainability.Specialising in global climate governance,international climate negotiation and climate policy,Sun has previously served as a member of the Chinese delegation to the 2023 United Nations Climate Change Conference(COP28)and 2024 Bonn Subsidiary Bodies Meeting.展开更多
We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other ...We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other countries will require the rapid construction of communities capable of supporting them, their families, businesses and farms. However, different political-economic conditions are found across the areas which can serve as locations for these Climate Change Haven Communities. We develop funding and construction strategies for the United States (free-market capitalism), France and Spain (European Union supported economies), and Taiwan region (state-directed economy). The proposals for the Taiwan region should also be applicable to the rest of China.展开更多
To address climate change and highlight its global nature,the United Nations Framework Convention on Climate Change(UNFCCC)was adopted for the first time in history within the UN framework on May 9,1992,clearly establ...To address climate change and highlight its global nature,the United Nations Framework Convention on Climate Change(UNFCCC)was adopted for the first time in history within the UN framework on May 9,1992,clearly establishing the obligations of developed countries to take the lead in emission reduction and provide financial,technological,and capacity-building support to developing countries.Particularly since the 2015 Paris Agreement,successive UN climate conferences have placed high emphasis on financial and technological matters,with financial arrangements demonstrating an increasingly specific trend in recent years.The Glasgow Climate Pact adopted in 2021 urges developed country Parties to deliver on their commitment to the goal of providing USD 100 billion to developing country prties,while also urging developed country parties to at least double their provision of climate finance to developing country parties by 2025 compared to 2019 levels.展开更多
As the world gathers in Belém,Brazil,for the 30th UN Climate Change Conference,COP30,global attention is once again turning to China.For years,China was primarily discussed as the world’s largest carbon emitter....As the world gathers in Belém,Brazil,for the 30th UN Climate Change Conference,COP30,global attention is once again turning to China.For years,China was primarily discussed as the world’s largest carbon emitter.Today,that picture is more complex.China is also the largest builder of renewable energy infrastructure,a key driver in lowering global clean-tech costs,and a major contributor to international climate cooperation.展开更多
IN his video speech to the United Nations Climate Summit held in New York on September 24,Chinese President Xi Jinping announced China’s new Nationally Determined Contributions(NDC)—the efforts taken by each country...IN his video speech to the United Nations Climate Summit held in New York on September 24,Chinese President Xi Jinping announced China’s new Nationally Determined Contributions(NDC)—the efforts taken by each country to reduce their emissions and adapt to the impacts of climate change.展开更多
The Arctic and Antarctica are important components of the Earth system,and the snow and ice over the polar regions make the interactions between the spheres there extremely sensitive to climate change,with an amplifyi...The Arctic and Antarctica are important components of the Earth system,and the snow and ice over the polar regions make the interactions between the spheres there extremely sensitive to climate change,with an amplifying effect on climate warming.Polar regions are the forefront of global climate and ecosystem changes.More than half of the identified climate tipping elements in our planet occur in the polar regions,with the losses of Arctic sea ice,Greenland ice sheet,permafrost,and western Antarctic ice sheet,being considered as tipping elements with global impacts that have already occurred(McKay et al.,2022).These changes in the polar regions affect the heat and material transfer,water and carbon cycles,as well as biological diversity at a global scale,closely related to global sustainable development.Therefore,polar regions are also considered the limiting factors in achieving the United Nations Sustainable Development Goals(Li et al.,2025).展开更多
I never thought I'd become a climate refugee.After moving my family from drought and wildfire-stricken California to the so-called“climate haven”of Asheville,NC,I thought we were safe.But just two months after s...I never thought I'd become a climate refugee.After moving my family from drought and wildfire-stricken California to the so-called“climate haven”of Asheville,NC,I thought we were safe.But just two months after settling into our lovely and wooded community with mild weather,we had to flee.展开更多
The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and the...The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.展开更多
基金provided by the LASG State Key Laboratory Special Fund for this research project
文摘The impacts of solar activity on climate are explored in this two-part study. Based on the principles of atmospheric dynamics, Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns. This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24, the historical surface temperature data, and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters. For low solar activity, the thermal contrast between the low- and high-latitudes is enhanced, so as the mid-latitude baroclinic ultra-long wave activity. The land-ocean thermal contrast is also enhanced, which amplifies the topographic waves. The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes, making the atmospheric "heat engine" more efficient than normal. The jets shift southward and the polar vortex is weakened. The Northern Annular Mode (NAM) index tends to be negative. The mid-latitude surface exhibits large-scale convergence and updrafts, which favor extreme weather/climate events to occur. The thermally driven Siberian high is enhanced, which enhances the East Asian winter monsoon (EAWM). For high solar activity, the mid-latitude circulation patterns are less wavy with less meridional transport. The NAM tends to be positive, and the Siberian high and the EAWM tend to be weaker than normal. Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity. The solar influence on the mid- to high-latitude surface temperature and circulations can stand out after removing the influence from the E1 Nifio-Southern Oscillation. The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is compared with other external radiative forcings that do not influence the climate in the same way as the sun does.
基金provided by the LASG State Key Laboratory Special Fund for this research project
文摘Part II of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number up to Solar Cycle 24.To explore plausible solar origins of the observed decadal-centennial timescales in the SSTs and climate variability in general,we design a simple one-dimensional dynamical system forced by an annual cycle modulated by a small-amplitude single-or multi-scale"solar activity."Results suggest that nonlinear harmonic and subharmonic resonance of the system to the forcing and period-doubling bifurcations are responsible for the dominant timescales in the system,including the 60-yr timescale that dominates the Atlantic Multidecadal Oscillation.The dominant timescales in the forced system depend on the system's parameter setting.Scale enhancement among the dominant response timescales may result in dramatic amplifications over a few decades and extreme values of the time series on various timescales.Three possible energy sources for such amplifications and extremes are proposed.Dynamical model results suggest that solar activity may play an important yet not well recognized role in the observed decadal-centennial climate variability.The atmospheric dynamical amplifying mechanism shown in Part I and the nonlinear resonant and bifurcation mechanisms shown in Part II help us to understand the solar source of the multi-scale climate change in the 20th century and the fact that different solar influenced dominant timescales for recurrent climate extremes for a given region or a parameter setting.Part II also indicates that solar influences on climate cannot be linearly compared with non-cyclic or sporadic thermal forcings because they cannot exert their influences on climate in the same way as the sun does.
文摘We apply Singular Spectrum Analysis to four datasets of observed global-mean near-surface temperature from start year to through 2012: HadCRU (to = 1850), NOAA (to = 1880), NASA (to = 1880), and JMA (to = 1891). For each dataset, SSA reveals a trend of increasing temperature and several quasi-periodic oscillations (QPOs). QPOs 1, 2 and 3 are predictable on a year-by-year basis by sine waves with periods/amplitudes of: 1) 62.4 years/0.11°C;2) 20.1 to 21.4 years/0.04°C to 0.05°C;and 3) 9.1 to 9.2 years/0.03°C to 0.04°C. The remainder of the natur°l variability is not predictable on a year-by-year basis. We represent this noise by its 90 percent confidence interval. We combine the predictable and unpredictable natural variability with the temperature changes caused by the 11-year solar cycle and humanity, the latter for both the Reference and Revised-Fair-Plan scenarios for future emissions of greenhouse gases. The resulting temperature departures show that we have moved from the first phase of learning—Ignorance—through the second phase—Uncertainty—and are now entering the third phase—Resolution—when the human-caused signal is much larger than the natural variability. Accordingly, it is now time to transition to the post-fossil-fuel age by phasing out fossil-fuel emissions from 2020 through 2100.
基金supported by the National Natural Science Foundation of China(Grant No.U2342208)support from NSF/Climate Dynamics Award#2025057。
文摘Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.
基金supported by the funding Riset Unggulan Daerah 2022 of the Bureau of Development Planning and Research in Central Java Province(BAPPEDA Provinsi Jawa Tengah).
文摘Located downstream the Kupang Catchment in Indonesia,Pekalongan faces significant land subsidence issues,leading to severe coastal flooding.This study aimed to assess the impact of climate change on future flow regimes and hydrological extremes to inform long-term water resources management strategies for the Kupang Catchment.Utilizing precipitation and air temperature data from general circulation models in the Coupled Model Intercomparison Project 6(CMIP6)and employing bias correction techniques,the Soil and Water Assessment Tool(SWAT)hydrological model was employed to analyze climate-induced changes in hydrological fluxes,specifically streamflow.Results indicated a consistent increase in monthly streamflow during the wet season,with a substantial rise of 22.8%,alongside a slight decrease of 18.0%during the dry season.Moreover,both the frequency and severity of extremely low and high flows were projected to intensify by approximately 50%and 70%,respectively,for a 20-year return period,suggesting heightened flood and drought risks in the future.The observed declining trend in low flow,by up to 11%,indicated the potential for long-term groundwater depletion exacerbating the threat of land subsidence and coastal flooding,especially in areas with inadequate surface water management policies and infrastructure.
基金funded by the National Natural Science Foundation of China(32372546)Shenzhen Science and Technology Program(KQTD20180411143628272)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences and STI 2030-Major Projects(2022ZD04021)the National Key Research and Development Program of China(2023YFD2200700)。
文摘Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management.In this study,we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm(Helicoverpa armigera)in the adaptation to local environments and resilience to future climate change.Notably,the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades.Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm.Approximately 19,000 years ago,the cotton bollworm expanded from its ancestral African population,followed by gradual occupations of the European,Asian,Oceanian,and American continents.Furthermore,we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential.Additionally,a large number of candidate genes and SNPs linked to climatic adaptation were mapped.These findings could inform sustainable pest management strategies in the face of climate change,aiding future pest forecasting and management planning.
基金supported by the National Natural Science Foundation of China(42277087,42130708,42471021,42277482,and 42361144876)the Natural Science Foundation of Guangdong Province(2024A1515012550)+3 种基金the Hainan Institute of National Park grant(KY-23ZK01)the Tsinghua Shenzhen International Graduate School Cross-disciplinary Research and Innovation Fund Research Plan(JC2022011)the Shenzhen Science and Technology Program(JCYJ20240813112106009 and ZDSYS20220606100806014)the Scientific Research Start-up Funds(QD2021030C)from Tsinghua Shenzhen International Graduate School。
文摘Food systems are deeply affected by climate change and air pollution,while being key contributors to these environmental challenges.Understanding the complex interactions among food systems,climate change,and air pollution is crucial for mitigating climate change,improving air quality,and promoting the sustainable development of food systems.However,the literature lacks a comprehensive review of these interactions,particularly in the current phase of rapid development in the field.To address this gap,this study systematically reviews recent research on the impacts of climate change and air pollution on food systems,as well as the greenhouse gas and air pollutant emissions from agri-food systems and their contribution to global climate change and air pollution.In addition,this study summarizes various strategies for mitigation and adaptation,including adjustments in agricultural practices and food supply chains.Profound changes in food systems are urgently needed to enhance adaptability and reduce emissions.This review offers a critical overview of current research on the interactions among food systems,climate change,and air pollution and highlights future research directions to support the transition to sustainable food systems.
基金supported by the Tianchi Talent-Young Doctor Program of the Xinjiang Uygur Autonomous Region,the Innovation Training Program for Undergraduates at the Autonomous Region Level in 2024(Grant No.S202410755009)the Innovation Training Program for Undergraduates at the University Level in 2024(Grant No.XJU-SRT-24008)+3 种基金the National Innovation Training Program for College Students in 2024(Grant No.202410755009)the National Natural Science Foundation of China(Grant No.42401065)the Basic and Applied Basic Research Program of Guangdong Province,China(Grant No.2023A1515011273)the Research Projects of the Department of Education of Guangdong Province(Grant No.2023KTSCX315).
文摘Aboveground biomass(AGB)and belowground biomass(BGB)are key components of carbon storage,yet their responses to future climate changes remain poorly understood,particularly in China.Understanding these dynamics is essential for global carbon cycle modeling and ecosystem management.This study integrates field observations,machine learning,and multi-source remote sensing data to reconstruct the distributions of AGB and BGB in China from 2000 to 2020.Then CMIP6 was used to predict the distribution of China under three SSP scenarios(SSP1-1.9,SSP2-4.5,SSP5-8.5)from 2020 to 2100 to fill the existing knowledge gap.The predictive accuracy for AGB(R^(2)=0.85)was significantly higher than for BGB(R^(2)=0.48),likely due to the greater complexity of modeling belowground dynamics.NDVI(Normalized Difference Vegetation Index)and soil organic carbon density(SOC)were identified as the primary drivers of AGB and BGB changes.During 2000-2020,AGB in China remained stable at approximately 10.69 Pg C,while BGB was around 5.06 Pg C.Forest ecosystems contributed 88.52% of AGB and 43.83% of BGB.AGB showed a relatively slow annual increase,while BGB demonstrated a significant annual growth rate of approximately 37 Tg C yr^(−1).Under the low-emission scenario,both AGB and BGB show fluctuations and steady growth,particularly in South China and the northwestern part of Northeast China.Under the moderate-emission scenario,AGB and BGB show significant declines and increases,respectively.In the high-emission scenario,both AGB and BGB decline significantly,particularly in the southwestern and central regions.These results provide valuable insights into ecosystem carbon dynamics under climate change,emphasizing the relatively low responsiveness of AGB and BGB to climatic variability,and offering guidance for sustainable land use and management strategies.
基金supported by the Science and Technology Program of Xinjiang Construction Corps(No.2024AB064)the National Natural Science Foundation of China(Nos.41975044,42001314)。
文摘Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled model inter-comparison project phase six(CMIP6)climatic patterns under the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5.The DSSAT-CROPGROCotton model,along with stepwise multiple regression analyses,was used to simulate changes in the potential yield of seed cotton due to climate change.The results show that while future temperatures in the Tarim River Basin will rise significantly,changes in precipitation and radiation during the cotton-growing season are minimal.Seed cotton yields are more sensitive to low temperatures than to precipitation and radiation.The potential yield of seed cotton under the SSP2-4.5 scenario would increase by 14.8%,23.7%,29.0%,and 29.4%in the 2030S,2050S,2070S,and 2090S,respectively.In contrast,under the SSP5-8.5 scenario,the potential yield of seed cotton would see increases of 17.5%,27.1%,30.1%,and 22.6%,respectively.Except for the 2090s under the SSP5-8.5 scenario,future seed cotton production can withstand a 10%to 20%deficit in irrigation.These findings will help develop climate change adaptation strategies for cotton cultivation.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.42422502 and 42275038)the China Meteorological Administration Climate Change Special Program (Grant No.QBZ202306)funded by the Met Office Climate Science for Service Partnership (CSSP) China project under the International Science Partnerships Fund (ISPF)。
文摘This past year, 2024, is on track to be the warmest year, joining 2023 as the two hottest years on record. With the exceptional heat, weather and climate extremes were common across the world. In particular, 2024 has seen a remarkable run of extreme precipitation events and resulting impacts. Here, we provide an overview of the most notable extreme events of the year, including extreme precipitation and floods, tropical cyclones, and droughts. The characteristics and impacts of these extreme events are summarized, followed by discussion on the physical drivers and the role of global warming.Finally, we also discuss the future prospects in extreme event studies, including impact-based perspectives, challenges in attribution of precipitation extremes, and the existing gap to minimize impacts from climate extremes.
基金supported by the National Natural Science Foundation of China(No.82025030,No.72394404)the National Key Research and Development Program of China(No.2022YFC3702700)the National Research Program for Key Issues in Air Pollution Control of China(No.DQGG0401).
文摘As global greenhouse gases continue rising,the urgency of more ambitious action is clearer than ever before.China is the world’s biggest emitter of greenhouse gases and one of the countries affected most by climate change.The evidence about the impacts of climate change on the environment and human health may encourage China to take more decisive action to mitigate greenhouse gas emissions and adapt to climate impacts.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
文摘The G20 Youth Summit(Y20)took place in Johannesburg,South Africa,from 18 to 23 August.Sun Ruoshui,a research assistant from the Institute of Climate Change and Sustainable Development,Tsinghua University,was appointed by the All-China Youth Federation to represent China in the discussions on Climate and Environmental Sustainability.Specialising in global climate governance,international climate negotiation and climate policy,Sun has previously served as a member of the Chinese delegation to the 2023 United Nations Climate Change Conference(COP28)and 2024 Bonn Subsidiary Bodies Meeting.
文摘We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other countries will require the rapid construction of communities capable of supporting them, their families, businesses and farms. However, different political-economic conditions are found across the areas which can serve as locations for these Climate Change Haven Communities. We develop funding and construction strategies for the United States (free-market capitalism), France and Spain (European Union supported economies), and Taiwan region (state-directed economy). The proposals for the Taiwan region should also be applicable to the rest of China.
文摘To address climate change and highlight its global nature,the United Nations Framework Convention on Climate Change(UNFCCC)was adopted for the first time in history within the UN framework on May 9,1992,clearly establishing the obligations of developed countries to take the lead in emission reduction and provide financial,technological,and capacity-building support to developing countries.Particularly since the 2015 Paris Agreement,successive UN climate conferences have placed high emphasis on financial and technological matters,with financial arrangements demonstrating an increasingly specific trend in recent years.The Glasgow Climate Pact adopted in 2021 urges developed country Parties to deliver on their commitment to the goal of providing USD 100 billion to developing country prties,while also urging developed country parties to at least double their provision of climate finance to developing country parties by 2025 compared to 2019 levels.
文摘As the world gathers in Belém,Brazil,for the 30th UN Climate Change Conference,COP30,global attention is once again turning to China.For years,China was primarily discussed as the world’s largest carbon emitter.Today,that picture is more complex.China is also the largest builder of renewable energy infrastructure,a key driver in lowering global clean-tech costs,and a major contributor to international climate cooperation.
文摘IN his video speech to the United Nations Climate Summit held in New York on September 24,Chinese President Xi Jinping announced China’s new Nationally Determined Contributions(NDC)—the efforts taken by each country to reduce their emissions and adapt to the impacts of climate change.
文摘The Arctic and Antarctica are important components of the Earth system,and the snow and ice over the polar regions make the interactions between the spheres there extremely sensitive to climate change,with an amplifying effect on climate warming.Polar regions are the forefront of global climate and ecosystem changes.More than half of the identified climate tipping elements in our planet occur in the polar regions,with the losses of Arctic sea ice,Greenland ice sheet,permafrost,and western Antarctic ice sheet,being considered as tipping elements with global impacts that have already occurred(McKay et al.,2022).These changes in the polar regions affect the heat and material transfer,water and carbon cycles,as well as biological diversity at a global scale,closely related to global sustainable development.Therefore,polar regions are also considered the limiting factors in achieving the United Nations Sustainable Development Goals(Li et al.,2025).
文摘I never thought I'd become a climate refugee.After moving my family from drought and wildfire-stricken California to the so-called“climate haven”of Asheville,NC,I thought we were safe.But just two months after settling into our lovely and wooded community with mild weather,we had to flee.
文摘The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.