We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other ...We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other countries will require the rapid construction of communities capable of supporting them, their families, businesses and farms. However, different political-economic conditions are found across the areas which can serve as locations for these Climate Change Haven Communities. We develop funding and construction strategies for the United States (free-market capitalism), France and Spain (European Union supported economies), and Taiwan region (state-directed economy). The proposals for the Taiwan region should also be applicable to the rest of China.展开更多
To address climate change and highlight its global nature,the United Nations Framework Convention on Climate Change(UNFCCC)was adopted for the first time in history within the UN framework on May 9,1992,clearly establ...To address climate change and highlight its global nature,the United Nations Framework Convention on Climate Change(UNFCCC)was adopted for the first time in history within the UN framework on May 9,1992,clearly establishing the obligations of developed countries to take the lead in emission reduction and provide financial,technological,and capacity-building support to developing countries.Particularly since the 2015 Paris Agreement,successive UN climate conferences have placed high emphasis on financial and technological matters,with financial arrangements demonstrating an increasingly specific trend in recent years.The Glasgow Climate Pact adopted in 2021 urges developed country Parties to deliver on their commitment to the goal of providing USD 100 billion to developing country prties,while also urging developed country parties to at least double their provision of climate finance to developing country parties by 2025 compared to 2019 levels.展开更多
Located downstream the Kupang Catchment in Indonesia,Pekalongan faces significant land subsidence issues,leading to severe coastal flooding.This study aimed to assess the impact of climate change on future flow regime...Located downstream the Kupang Catchment in Indonesia,Pekalongan faces significant land subsidence issues,leading to severe coastal flooding.This study aimed to assess the impact of climate change on future flow regimes and hydrological extremes to inform long-term water resources management strategies for the Kupang Catchment.Utilizing precipitation and air temperature data from general circulation models in the Coupled Model Intercomparison Project 6(CMIP6)and employing bias correction techniques,the Soil and Water Assessment Tool(SWAT)hydrological model was employed to analyze climate-induced changes in hydrological fluxes,specifically streamflow.Results indicated a consistent increase in monthly streamflow during the wet season,with a substantial rise of 22.8%,alongside a slight decrease of 18.0%during the dry season.Moreover,both the frequency and severity of extremely low and high flows were projected to intensify by approximately 50%and 70%,respectively,for a 20-year return period,suggesting heightened flood and drought risks in the future.The observed declining trend in low flow,by up to 11%,indicated the potential for long-term groundwater depletion exacerbating the threat of land subsidence and coastal flooding,especially in areas with inadequate surface water management policies and infrastructure.展开更多
Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustaina...Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management.In this study,we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm(Helicoverpa armigera)in the adaptation to local environments and resilience to future climate change.Notably,the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades.Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm.Approximately 19,000 years ago,the cotton bollworm expanded from its ancestral African population,followed by gradual occupations of the European,Asian,Oceanian,and American continents.Furthermore,we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential.Additionally,a large number of candidate genes and SNPs linked to climatic adaptation were mapped.These findings could inform sustainable pest management strategies in the face of climate change,aiding future pest forecasting and management planning.展开更多
Agriculture,significantly impacted by climate change and climate variability,serves as the primary livelihood for smallholder farmers in South Asia.This study aims to examine and evaluate the factors influencing small...Agriculture,significantly impacted by climate change and climate variability,serves as the primary livelihood for smallholder farmers in South Asia.This study aims to examine and evaluate the factors influencing smallholder farmers'adaptive capacity(AC)in addressing these risks through surveys from 633 households across Nepal,India,and Bangladesh.The findings reveal that AC is influenced by various indicators categorized under eight principal factors.The first three factors,which explain about one-third of the variance in each country,include distinct significant indicators for each nation:in Nepal,these indicators are landholding size,skill-development training,knowledge of improved seed varieties,number of income sources,access to markets,and access to financial institutions;in India,they encompass ac-cess to agricultural-input information,knowledge of seed varieties,access to markets,access to crop insurance,changing the sowing/harvesting times of crops,and access to financial ser-vices;in Bangladesh,the key factors are access to financial institutions,community coopera-tion,changing the sowing/harvesting times of crops,knowledge of improved seed varieties,and access to agricultural-input information.Notably,indicators such as trust in weather in-formation,changing sowing/harvesting times of crops,and crop insurance were identified as important determinants of AC,which have been overlooked in previous studies.展开更多
Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of ...Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of climate change on cotton production and the use of genomic approaches to increase stress tolerance in cotton.This paper discusses the effects of rising temperatures,changing precipitation patterns,and extreme weather events on cotton yield.It then explores various genomic strategies,such as genomic selection and marker-assisted selection,which can be used to develop stress-tolerant cotton varieties.The review emphasizes the need for interdisciplinary research efforts and policy interventions to mitigate the adverse effects of climate change on cotton production.Furthermore,this paper presents advanced prospects,including genomic selection,gene editing,multi-omics integration,highthroughput phenotyping,genomic data sharing,climate-informed breeding,and phenomics-assisted genomic selection,for enhancing stress resilience in cotton.Those innovative approaches can assist cotton researchers and breeders in developing highly resilient cotton varieties capable of withstanding the challenges posed by climate change,ensuring the sustainable and prosperous future of cotton production.展开更多
Climate change is a pressing global environmental issue^([1]).The gradual rise in global surface temperature is the most immediate and direct among its public health impacts.Influenza,the leading cause of human respir...Climate change is a pressing global environmental issue^([1]).The gradual rise in global surface temperature is the most immediate and direct among its public health impacts.Influenza,the leading cause of human respiratory viral infections,remains a substantial public health concern owing to its considerable disease burden,particularly in highrisk groups.Mounting epidemiological evidence has linked influenza to extreme heat and cold weather^([2–4]).展开更多
The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and the...The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.展开更多
Brief description Climate change represents an unparalleled existential threat to humanity in the twenty-first century,demanding urgent and sustained global attention.Among the vast array of actors shaping Earth’s cl...Brief description Climate change represents an unparalleled existential threat to humanity in the twenty-first century,demanding urgent and sustained global attention.Among the vast array of actors shaping Earth’s climate system,microorganisms occupy a uniquely significant position.As the planet’s most abundant and diverse life forms,they not only respond sensitively to climatic change but also exert profound influence upon them.Microbes-comprising viruses,bacteria,archaea,fungi,algae,and protozoa-pervade from terrestrial soils and urban infrastructures to atmospheric layers,subterranean environments,and aquatic ecosystems.By virtue of their staggering abundance and metabolic diversity,microbes drive the cycling of essential elements at a planetary scale,sustain key symbiotic relationships with agricultural crops,and function as both sources and sinks of greenhouse gases.Thus,microorganisms must be recognized as indispensable agents within the Earth system,integral to understanding and addressing the dynamics of climate change.展开更多
Climate and weather significantly influence the duration,timing,and intensity of disease outbreaks,reshaping the global landscape of infectious diseases.Rising temperatures and shifts in precipitation patterns driven ...Climate and weather significantly influence the duration,timing,and intensity of disease outbreaks,reshaping the global landscape of infectious diseases.Rising temperatures and shifts in precipitation patterns driven by climate change can directly impact the survival and reproduction of pathogens and vector organisms.Moreover,climate change is expected to exacerbate extreme weather events,including floods and droughts,which can disrupt infrastructure and increase the risk of waterand foodborne diseases.There are potential shifts in the temporal and spatial patterns of infectious disease transmission owing to climate change.Furthermore,climate change may alter the epidemiology of vaccine-preventable diseases.These climatic variations not only affect the ecological characteristics of pathogens and vectors but also indirectly influence human behaviors and socioeconomic conditions,further amplifying disease transmission risks.Addressing this challenge requires an interdisciplinary collaboration and comprehensive public health strategies.This review aims to synthesize the current evidence on the impact of climate change on climate-sensitive infectious diseases and elucidate the underlying mechanisms and transmission pathways.Additionally,we explored adaptive policy strategies to mitigate the public health burden of infectious diseases in the context of climate change,offering insights for global health governance and disease control efforts.展开更多
Climate change has well-documented psychological consequences for society.However,the emotional experiences of frontline conservation professionals remain underexplored.As key knowledge producers and participants in d...Climate change has well-documented psychological consequences for society.However,the emotional experiences of frontline conservation professionals remain underexplored.As key knowledge producers and participants in decision-making processes,conservation researchers play a crucial role in shaping and implementing adaptation and mitigation efforts,which are pivotal for effective climate planning.Understanding their emotional responses is essential for enhancing the success of these strategies and supporting climate action.This study aims to identify the most prevalent emotions experienced by conservation researchers regarding climate change across various countries and to examine the qualitative and quantitative factors shaping these emotions.An online survey was conducted with 362 participants from 98 academic and research institutions,utilising both closed and open-ended questions to capture demographic data,climate knowledge,stances on mitigation and adaptation,and emotional responses.Data analysis revealed that feelings of powerlessness,guilt,and concern were most frequently reported,driven by a profound sense of inability to halt climate change,frustration with perceived inaction by governments and industries,and self-assessed personal shortcomings.Age and stances on climate adaptation were identified as primary factors influencing emotional responses,particularly among individuals aged 20–50 and 61–70,with opposition to adaptation correlating with stronger emotional reactions.Demographic factors such as region,place of residence,and mitigation stances played a minor role.These findings provide valuable insights into the psychological well-being of conservation researchers related to climate change.展开更多
Significant variations in global temperatures and weather patterns over time are known as climate change.Although it occurs naturally,human activities—particularly the burning of fossil fuels,deforestation,and indust...Significant variations in global temperatures and weather patterns over time are known as climate change.Although it occurs naturally,human activities—particularly the burning of fossil fuels,deforestation,and industrial processes—are accelerating these changes,which have various detrimental effects on the environment.This review aims to highlight the edapho-climatic requirements of this cactus and the advantages and challenges of its cultivation to mitigate climate change.The prickly pear cactus is a plant with numerous financial and environmental advantages.It needs well-draining,sandy or gravelly soil to avoid root rot and do best in full sun.With a strong tolerance for dryness,they thrive in arid or semi-arid regions with scorching summers and prefer sparing watering.Despite being suited to tropical climates,some species can tolerate freezing temperatures and sporadic frost.Once established,these hardy plants require little care and thrive in nutrient-poor soils,which makes them perfect for xeriscaping or challenging growing environments.Because of its high water use efficiency ratio and low water requirements,prickly pear can be grown in marginally dry and semi-arid areas.The cactus does contribute to the ecological and socioeconomic fight against climate change.For instance,it supports sustainable agriculture,biodiversity preservation,soil restoration,carbon sequestration,and effective water usage.Demarcating dry and semi-arid zones and fostering employment in these areas is beneficial from a socioeconomic standpoint.The prickly pear’s traditional cultural heritage supports its current economic function as a crop that can withstand drought.While ecological threats necessitate balanced management,this adaptability promotes sustainable growth.Innovations in bioenergy and value-added goods build on its historical applications,increasing its socioeconomic advantages and,eventually,its worldwide significance.展开更多
Understanding the impacts of climate change on the future growth of tree species is particularly important for conserving endemic species with limited geographic distributions,such as Serbian spruce(Picea omorika(Panc...Understanding the impacts of climate change on the future growth of tree species is particularly important for conserving endemic species with limited geographic distributions,such as Serbian spruce(Picea omorika(Pancic)Purk.).This study describes an approach to assessing the effects of future climate conditions on the growth and the implications for future management to conserve this endangered species on the IUCN Red List.To investigate the climate-growth relationship,age structure and diameter growth trends,we have sampled 231 trees across 11 locations at National Park"Tara"in western Serbia.The existence of heterogeneous age structures suggests that Serbian spruce poses considerable potential for continual regeneration in stands with open canopy.Conducted dendroclimatological analysis exhibits exceptional coherence in growth patterns within populations(Rxy 0.67–0.78),allowing the established climate-sensitive mixed-effect model to achieve conditional R^(c)^(2)=0.683.It is revealed that the radial increment of Serbian spruce is dominantly regulated by water deficit in the summer season.The rainfall amount during the spring is another meaningful climatic factor for growth trends,while minimal winter temperatures and previous autumn water balance show varying influences.Finally,the growth projections under climate change scenarios RCP4.5 and RCP8.5 foreseen reductions of up to one-third and almost half from the historical mean growth rate.The given estimations should be seen as a critical warning signal calling for immediate conversion from passive to active protection to preserve this unique species.展开更多
This study comprehensively examines the multifaceted impact of climate change on Morocco’s ecological sustainability and economic development,focusing on four critical environmental stressors:water stress,deforestati...This study comprehensively examines the multifaceted impact of climate change on Morocco’s ecological sustainability and economic development,focusing on four critical environmental stressors:water stress,deforestation,greenhouse gas emissions,and rising temperatures.These interrelated factors contribute significantly to the degradation of natural ecosystems,the decline in biodiversity,reductions in carbon sequestration,and the disruption of ecological balance.Water scarcity—exacerbated by declining precipitation,excessive groundwater extraction,and rising evapotranspiration—threatens the functionality of wetlands,agricultural productivity,and the livelihoods of rural populations.Deforestation accelerates soil erosion,alters hydrological cycles,and leads to the loss of critical habitats,while greenhouse gas emissions and temperature rise intensify climate variability and increase the frequency of extreme events such as droughts and heatwaves.Using longitudinal data from the World Bank(1990-2022)and advanced econometric modeling through EViews 12 software,this study reveals that water stress and rising temperatures have a statistically significant and negative impact on GDP,indicating that climate pressures undermine Morocco’s economic performance,particularly in climate-sensitive sectors.Conversely,the findings show that deforestation and greenhouse gas emissions are positively correlated with short-term economic growth,reflecting a development pattern heavily reliant on natural resource exploitation and carbon-intensive activities,which may offer temporary gains but pose serious long-term risks to sustainability.These results underscore the urgent need for a paradigm shift toward ecosystem-based adaptation and mitigation strategies,including afforestation,wetland restoration,integrated land and water resource management,and the incorporation of climate resilience into national development frameworks.展开更多
Climate change poses substantial challenges to agricultural productivity and sustainability,particularly in Mediterranean and Sub-Saharan Africa regions.Local smallholder farmers’adaptation strategies to climate chan...Climate change poses substantial challenges to agricultural productivity and sustainability,particularly in Mediterranean and Sub-Saharan Africa regions.Local smallholder farmers’adaptation strategies to climate change are crucial for mitigating these impacts.Therefore,this study investigated the socioeconomic factors influencing smallholder farmers’perceptions and adaptation strategies to climate change in four countries(Morocco,Egypt,Italy,and Senegal)of Mediterranean and Sub-Saharan Africa regions using a binary logistic regression(BLR)model.The results indicated that educational level,farming experience,agricultural income,farm size,participation in agricultural workshops,and training in Good Agricultural Practices(GAPs)significantly impacted smallholder farmers’perceptions and adaptation strategies to climate change(such as smallholder farmers adopting drought-tolerant crops).Higher educational level was linked to the greater possibility of smallholder farmers adopting drought-tolerant crops in Italy and Egypt,while gaps in rural education limited the possibility of smallholder farmers adopting drought-tolerant crops in Morocco and Senegal.Farming experience and agricultural income also enhanced the possibility of smallholder farmers adopting drought-tolerant crops,with notable variations across countries due to systemic barriers such as limited infrastructure in Senegal.Larger farm size and participation in agricultural workshops further improved the possibility of smallholder farmers adopting drought-tolerant crops,particularly in Morocco and Egypt.The findings highlighted the importance of tailored interventions and policy measures to support smallholder farmers in effectively responding to the challenges of climate change under diverse agricultural contexts.By understanding the specific needs and circumstances of smallholder farmers in these countries,policymakers can develop more effective adaptation strategies to enhance agricultural resilience and sustainability under the context of climate change.展开更多
We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose of search,here,they have the home-gardens,the farmers plant fruit trees at the...We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose of search,here,they have the home-gardens,the farmers plant fruit trees at the village of province,that is a place which influences by the climate change.We went to the alluvial soil such us:My Hoa village,Thap Muoi district,Dong Thap province to observe the landscape,here(30 households for 1 village),and we took the sample to analyze.We knew the factors such as:a drought,a deficiency of water,a salt water intrusion,a flood.These factors:influence to the trees,many damages,assets,diseases,live of the persons who stay here.We compare many home-gardens having a climate change with the normal home-gardens.Here,especially,we take care to study the flood because it is very important.Thus,we propose the reasonable methods in order to fix the consequence and prevent,we present some illustrations,too.展开更多
Low-carbon urban development in China can pave the way to achieve the dualcarbon goal.Exploring how land use changes(LUCs)impact carbon storage(CS)under multi-climate scenarios in different urban agglomerations helps ...Low-carbon urban development in China can pave the way to achieve the dualcarbon goal.Exploring how land use changes(LUCs)impact carbon storage(CS)under multi-climate scenarios in different urban agglomerations helps to formulate differential scientific carbon mitigation policies.In this regard,this study constructs an integrated model of SD-PLUS-InVEST to simulate LUCs and CS changes under multi-climate change-based scenarios(SSP126,SSP245,SSP585)for three major urban agglomerations(3UAs)in the Yangtze River Economic Belt.Results demonstrate that land use demand in the 3UAs changes considerably in each scenario.Construction land in the 3UAs remains the most important growth category for the coming decade,but its increase varies in different scenarios.CS in the Yangtze River Delta Urban Agglomeration(YRDUA)and Mid-Yangtze River Urban Agglomeration(MYRUA)shows a similar downward trend under different scenarios,with scenario SSP245 decreasing the most,to 184,713.526 Tg and 384,459.729 Tg,respectively.CS in the Cheng-Yu(Chengdu-Chongqing)Urban Agglomeration(CYUA)exhibits the opposite upward trend,with scenario SSP126 increasing the most to 153,007.973 Tg.The major cause of CS loss remains the conversion of forest land to construction land in the YRDUA and MYRUA under different scenarios.However,in the CYUA,the conversion of forest land to cultivated land is the major driver of CS loss under scenario SSP126.In contrast,the conversion of cultivated land to construction land dominantly drives CS loss under scenarios SSP245 and SSP585.The conversion of water body to other land use types is the major cause of CS gain in the YRDUA and MYRUA under different scenarios.At the same time,in the CYUA,the driver is the conversion of cultivated land to forest land.These findings demonstrate the significance of the low-carbon development in urban agglomerations at different development stages at home and abroad.展开更多
Extreme temperature events have intensified across Jordan over the past 40 a,increasing risks to agriculture,water availability,urban infrastructure,and public health.The purpose of this study is to assess the long-te...Extreme temperature events have intensified across Jordan over the past 40 a,increasing risks to agriculture,water availability,urban infrastructure,and public health.The purpose of this study is to assess the long-term spatial trends and regime shifts in extreme temperature indicators across Jordan's climate zones to explore climate adaptation strategies.This study presents a high-resolution and spatially explicit assessment of thermal extremes using daily data from 1982 to 2024 across 45 grid-based study points in Jordan.Thirteen temperature indices,including percentile-based thresholds,duration metrics,and absolute extremes,were computed using RClimDex and analyzed across four Köppen climate zones:hot desert(BWh),hot semi-arid(BSh),cold desert(BWk),and Mediterranean(Csa)climates.The analysis confirmed a statistically significant warming trend:annual mean maximum temperatures increased by 2.198°C,while annual mean minimum temperatures rose by 2.035°C.Cold extremes have sharply declined,with cold days(TX10p)decreasing by 70.0%–80.0%,and the cold spell duration indicator(CSDI)dropping from 12.6 to 4.0 d/a,particularly in the BWk zone.Heat indices intensified across all zones,with warm days(TX90p)increasing by over 300.0%in BWh,warm nights(TN90p)rising by 38.1%,and the warm spell duration indicator(WSDI)extending fourfold,indicating prolonged exposure to heatwaves.Mean value of maximum temperature(TXx)reached 45.600°C in most arid areas,while minimum temperature(TNx)exceeded 31.600°C,highlighting increased nocturnal heat stress.Change-point analysis indicated that 1998 was a pivotal year,marking a structural transition in both cold and warm temperature indices.Subsequent intensifications after 2010 in TN90p,TNx,and mean of daily maximum temperature(Tmaxmean)reflected an ongoing trend toward sustained thermal extremes.In addition to time-series trends,the study employed network-based correlation analysis to explore the coherence among climate indices.Strong positive correlations were observed among TXx,TX90p,and mean of daily minimum temperature(Tminmean)(r≥0.94),as well as among TN90p,Tminmean,and TNx(r≥0.87),indicating a tightly clustered heat subsystem.Duration metrics like the WSDI showed a close alignment with percentile extremes(between WSDI and TX90p;r=0.88),suggesting integrated heatwave behavior.In contrast,cold indices(TX10p,TN90p,frost days,and CSDI)exhibited weak or negative correlations and displayed peripheral positioning in the climate network,indicating their limited role under a warming regime.Absolute extremes showed weak internal linkages,suggesting episodic rather than systemic response characteristics.This structural realignment indicated a shift from a previously balanced thermal profile to a heat-dominated climate system.Regional variations revealed that BWh and BSh were experiencing the steepest warming,while Csa was transitioning more slowly but was showing signs of reduced winter cooling and increased irrigation demands.The findings establish a robust climate baseline for Jordan and offer actionable insights for climate adaptation planning.Recommended measures include precision irrigation,the development of heat-resilient crops,improvements to urban cooling infrastructure,and early warning systems for thermal extremes.By integrating spatial climate zoning,regime shift analysis,and inter-index correlation structures,this study provides a replicable framework for monitoring climatic transformations and informing resilience strategies in arid and semi-arid areas.展开更多
The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European b...The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European beech forests require further investigation to understand how climate change will affect these ecosystems in Mediterranean areas.Proposed silvicultural options increasingly aim at sustainable management to reduce biotic and abiotic stresses and enhance these forest ecosystems'resistance and resilience mechanisms.Process-based models(PBMs)can help us to simulate such phenomena and capture early stress signals while considering the effect of different management approaches.In this study,we focus on estimating sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water fluxes at the stand level to assess productivity changes and feedback resulting from different climatic forcings as well as different management regimes.We applied the 3D-CMCC-FEM and MEDFATE forest models for carbon(C)and water(H_(2)O)fluxes in two sites of the Italian peninsula,Cansiglio in the north and Mongiana in the south,under managed vs.unmanaged scenarios and under current climate and different climatic scenarios(RCP4.5 and RCP8.5).To ensure confidence in the models’results,we preliminary evaluated their performance in simulating C and H_(2)O flux in three additional beech forests of the FLUXNET network along a latitudinal gradient spanning from Denmark to central Italy.The 3D-CMCC-FEM model achieved R^(2)values of 0.83 and 0.86 with RMSEs of 2.53 and 2.05 for C and H_(2)O fluxes,respectively.MEDFATE showed R^(2)values of 0.76 and 0.69 with RMSEs of 2.54 and 3.01.At the Cansiglio site in northern Italy,both models simulated a general increase in C and H_(2)O fluxes under the RCP8.5 climate scenario compared to the current climate.Still,no benefit in managed plots compared to unmanaged ones,as the site does not have water availability limitations,and thus,competition for water is low.At the Mongiana site in southern Italy,both models predict a decrease in C and H_(2)O fluxes and sensitivity to the different climatic forcing compared to the current climate;and an increase in C and H_(2)O fluxes when considering specific management regimes compared to unmanaged scenarios.Conversely,under unmanaged scenarios plots are simulated to experience first signals of mortality prematurely due to water stress(MEDFATE)and carbon starvation(3D-CMCC-FEM)scenarios.In conclusion,while management interventions may be considered a viable solution for the conservation of beech forests under future climate conditions at moister sites like Cansiglio,in drier sites like Mongiana conservation may not lie in management interventions alone.展开更多
文摘We examine possible funding sources for constructing Climate Change Haven Communities on a global basis. Areas of the planet that have the potential to house persons migrating to “safe havens” in their own or other countries will require the rapid construction of communities capable of supporting them, their families, businesses and farms. However, different political-economic conditions are found across the areas which can serve as locations for these Climate Change Haven Communities. We develop funding and construction strategies for the United States (free-market capitalism), France and Spain (European Union supported economies), and Taiwan region (state-directed economy). The proposals for the Taiwan region should also be applicable to the rest of China.
文摘To address climate change and highlight its global nature,the United Nations Framework Convention on Climate Change(UNFCCC)was adopted for the first time in history within the UN framework on May 9,1992,clearly establishing the obligations of developed countries to take the lead in emission reduction and provide financial,technological,and capacity-building support to developing countries.Particularly since the 2015 Paris Agreement,successive UN climate conferences have placed high emphasis on financial and technological matters,with financial arrangements demonstrating an increasingly specific trend in recent years.The Glasgow Climate Pact adopted in 2021 urges developed country Parties to deliver on their commitment to the goal of providing USD 100 billion to developing country prties,while also urging developed country parties to at least double their provision of climate finance to developing country parties by 2025 compared to 2019 levels.
基金supported by the funding Riset Unggulan Daerah 2022 of the Bureau of Development Planning and Research in Central Java Province(BAPPEDA Provinsi Jawa Tengah).
文摘Located downstream the Kupang Catchment in Indonesia,Pekalongan faces significant land subsidence issues,leading to severe coastal flooding.This study aimed to assess the impact of climate change on future flow regimes and hydrological extremes to inform long-term water resources management strategies for the Kupang Catchment.Utilizing precipitation and air temperature data from general circulation models in the Coupled Model Intercomparison Project 6(CMIP6)and employing bias correction techniques,the Soil and Water Assessment Tool(SWAT)hydrological model was employed to analyze climate-induced changes in hydrological fluxes,specifically streamflow.Results indicated a consistent increase in monthly streamflow during the wet season,with a substantial rise of 22.8%,alongside a slight decrease of 18.0%during the dry season.Moreover,both the frequency and severity of extremely low and high flows were projected to intensify by approximately 50%and 70%,respectively,for a 20-year return period,suggesting heightened flood and drought risks in the future.The observed declining trend in low flow,by up to 11%,indicated the potential for long-term groundwater depletion exacerbating the threat of land subsidence and coastal flooding,especially in areas with inadequate surface water management policies and infrastructure.
基金funded by the National Natural Science Foundation of China(32372546)Shenzhen Science and Technology Program(KQTD20180411143628272)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences and STI 2030-Major Projects(2022ZD04021)the National Key Research and Development Program of China(2023YFD2200700)。
文摘Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management.In this study,we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm(Helicoverpa armigera)in the adaptation to local environments and resilience to future climate change.Notably,the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades.Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm.Approximately 19,000 years ago,the cotton bollworm expanded from its ancestral African population,followed by gradual occupations of the European,Asian,Oceanian,and American continents.Furthermore,we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential.Additionally,a large number of candidate genes and SNPs linked to climatic adaptation were mapped.These findings could inform sustainable pest management strategies in the face of climate change,aiding future pest forecasting and management planning.
基金The Alliance of International Science Organizations(ANSO),No.ANSO-CR-PP-2021-06The Second Tibetan Plateau Scientific Expedition and Research,No.2019QZKK0603。
文摘Agriculture,significantly impacted by climate change and climate variability,serves as the primary livelihood for smallholder farmers in South Asia.This study aims to examine and evaluate the factors influencing smallholder farmers'adaptive capacity(AC)in addressing these risks through surveys from 633 households across Nepal,India,and Bangladesh.The findings reveal that AC is influenced by various indicators categorized under eight principal factors.The first three factors,which explain about one-third of the variance in each country,include distinct significant indicators for each nation:in Nepal,these indicators are landholding size,skill-development training,knowledge of improved seed varieties,number of income sources,access to markets,and access to financial institutions;in India,they encompass ac-cess to agricultural-input information,knowledge of seed varieties,access to markets,access to crop insurance,changing the sowing/harvesting times of crops,and access to financial ser-vices;in Bangladesh,the key factors are access to financial institutions,community coopera-tion,changing the sowing/harvesting times of crops,knowledge of improved seed varieties,and access to agricultural-input information.Notably,indicators such as trust in weather in-formation,changing sowing/harvesting times of crops,and crop insurance were identified as important determinants of AC,which have been overlooked in previous studies.
基金supported by major national R&D projects(No.2023ZD04040-01)National Natural Science Foundation of China(No.5201101621)National Key R&D Plan(No.2022YFD1200304).
文摘Cotton is an essential agricultural commodity,but its global yield is greatly affected by climate change,which poses a serious threat to the agriculture sector.This review aims to provide an overview of the impact of climate change on cotton production and the use of genomic approaches to increase stress tolerance in cotton.This paper discusses the effects of rising temperatures,changing precipitation patterns,and extreme weather events on cotton yield.It then explores various genomic strategies,such as genomic selection and marker-assisted selection,which can be used to develop stress-tolerant cotton varieties.The review emphasizes the need for interdisciplinary research efforts and policy interventions to mitigate the adverse effects of climate change on cotton production.Furthermore,this paper presents advanced prospects,including genomic selection,gene editing,multi-omics integration,highthroughput phenotyping,genomic data sharing,climate-informed breeding,and phenomics-assisted genomic selection,for enhancing stress resilience in cotton.Those innovative approaches can assist cotton researchers and breeders in developing highly resilient cotton varieties capable of withstanding the challenges posed by climate change,ensuring the sustainable and prosperous future of cotton production.
基金supported by a Grant-inAid for Scientific Research(KAKENHI)from the Japan Society for the Promotion of Science(grant no.22J23183)。
文摘Climate change is a pressing global environmental issue^([1]).The gradual rise in global surface temperature is the most immediate and direct among its public health impacts.Influenza,the leading cause of human respiratory viral infections,remains a substantial public health concern owing to its considerable disease burden,particularly in highrisk groups.Mounting epidemiological evidence has linked influenza to extreme heat and cold weather^([2–4]).
文摘The accelerated pace of natural and human-driven climate change presents profound challenges for Earth's systems.Oceans and ice sheets are critical regulators of climate systems,functioning as carbon sinks and thermal reservoirs.However,they are increasingly vulnerable to warming and greenhouse gas emissions.
基金supported by the China Social Science Foundation(24BZX097)and Noncommunicable Chronic Diseases-National Science and Technology Major Project(2023ZD0509602).
文摘Brief description Climate change represents an unparalleled existential threat to humanity in the twenty-first century,demanding urgent and sustained global attention.Among the vast array of actors shaping Earth’s climate system,microorganisms occupy a uniquely significant position.As the planet’s most abundant and diverse life forms,they not only respond sensitively to climatic change but also exert profound influence upon them.Microbes-comprising viruses,bacteria,archaea,fungi,algae,and protozoa-pervade from terrestrial soils and urban infrastructures to atmospheric layers,subterranean environments,and aquatic ecosystems.By virtue of their staggering abundance and metabolic diversity,microbes drive the cycling of essential elements at a planetary scale,sustain key symbiotic relationships with agricultural crops,and function as both sources and sinks of greenhouse gases.Thus,microorganisms must be recognized as indispensable agents within the Earth system,integral to understanding and addressing the dynamics of climate change.
基金supported by the National Natural Science Foundation of China(grant number 72122001).
文摘Climate and weather significantly influence the duration,timing,and intensity of disease outbreaks,reshaping the global landscape of infectious diseases.Rising temperatures and shifts in precipitation patterns driven by climate change can directly impact the survival and reproduction of pathogens and vector organisms.Moreover,climate change is expected to exacerbate extreme weather events,including floods and droughts,which can disrupt infrastructure and increase the risk of waterand foodborne diseases.There are potential shifts in the temporal and spatial patterns of infectious disease transmission owing to climate change.Furthermore,climate change may alter the epidemiology of vaccine-preventable diseases.These climatic variations not only affect the ecological characteristics of pathogens and vectors but also indirectly influence human behaviors and socioeconomic conditions,further amplifying disease transmission risks.Addressing this challenge requires an interdisciplinary collaboration and comprehensive public health strategies.This review aims to synthesize the current evidence on the impact of climate change on climate-sensitive infectious diseases and elucidate the underlying mechanisms and transmission pathways.Additionally,we explored adaptive policy strategies to mitigate the public health burden of infectious diseases in the context of climate change,offering insights for global health governance and disease control efforts.
基金funded the Ecuadorian National Secretary of Higher Education,Science and Technology(SENESCYT),through the Scholarship Programme 2012.
文摘Climate change has well-documented psychological consequences for society.However,the emotional experiences of frontline conservation professionals remain underexplored.As key knowledge producers and participants in decision-making processes,conservation researchers play a crucial role in shaping and implementing adaptation and mitigation efforts,which are pivotal for effective climate planning.Understanding their emotional responses is essential for enhancing the success of these strategies and supporting climate action.This study aims to identify the most prevalent emotions experienced by conservation researchers regarding climate change across various countries and to examine the qualitative and quantitative factors shaping these emotions.An online survey was conducted with 362 participants from 98 academic and research institutions,utilising both closed and open-ended questions to capture demographic data,climate knowledge,stances on mitigation and adaptation,and emotional responses.Data analysis revealed that feelings of powerlessness,guilt,and concern were most frequently reported,driven by a profound sense of inability to halt climate change,frustration with perceived inaction by governments and industries,and self-assessed personal shortcomings.Age and stances on climate adaptation were identified as primary factors influencing emotional responses,particularly among individuals aged 20–50 and 61–70,with opposition to adaptation correlating with stronger emotional reactions.Demographic factors such as region,place of residence,and mitigation stances played a minor role.These findings provide valuable insights into the psychological well-being of conservation researchers related to climate change.
文摘Significant variations in global temperatures and weather patterns over time are known as climate change.Although it occurs naturally,human activities—particularly the burning of fossil fuels,deforestation,and industrial processes—are accelerating these changes,which have various detrimental effects on the environment.This review aims to highlight the edapho-climatic requirements of this cactus and the advantages and challenges of its cultivation to mitigate climate change.The prickly pear cactus is a plant with numerous financial and environmental advantages.It needs well-draining,sandy or gravelly soil to avoid root rot and do best in full sun.With a strong tolerance for dryness,they thrive in arid or semi-arid regions with scorching summers and prefer sparing watering.Despite being suited to tropical climates,some species can tolerate freezing temperatures and sporadic frost.Once established,these hardy plants require little care and thrive in nutrient-poor soils,which makes them perfect for xeriscaping or challenging growing environments.Because of its high water use efficiency ratio and low water requirements,prickly pear can be grown in marginally dry and semi-arid areas.The cactus does contribute to the ecological and socioeconomic fight against climate change.For instance,it supports sustainable agriculture,biodiversity preservation,soil restoration,carbon sequestration,and effective water usage.Demarcating dry and semi-arid zones and fostering employment in these areas is beneficial from a socioeconomic standpoint.The prickly pear’s traditional cultural heritage supports its current economic function as a crop that can withstand drought.While ecological threats necessitate balanced management,this adaptability promotes sustainable growth.Innovations in bioenergy and value-added goods build on its historical applications,increasing its socioeconomic advantages and,eventually,its worldwide significance.
基金supported by the perennial project activities financed by National Park“Tara”(grants no.1159&1344)The research engagement of M.K.and B.S.was supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia within the framework of the program technological development(grant no.200169)+1 种基金The work of M.K.was also supported by the Science Fond of the Republic of Serbia,grant no.6686EO and in situ based information framework to support generating Carbon Credits in forestry-ForestCO2。
文摘Understanding the impacts of climate change on the future growth of tree species is particularly important for conserving endemic species with limited geographic distributions,such as Serbian spruce(Picea omorika(Pancic)Purk.).This study describes an approach to assessing the effects of future climate conditions on the growth and the implications for future management to conserve this endangered species on the IUCN Red List.To investigate the climate-growth relationship,age structure and diameter growth trends,we have sampled 231 trees across 11 locations at National Park"Tara"in western Serbia.The existence of heterogeneous age structures suggests that Serbian spruce poses considerable potential for continual regeneration in stands with open canopy.Conducted dendroclimatological analysis exhibits exceptional coherence in growth patterns within populations(Rxy 0.67–0.78),allowing the established climate-sensitive mixed-effect model to achieve conditional R^(c)^(2)=0.683.It is revealed that the radial increment of Serbian spruce is dominantly regulated by water deficit in the summer season.The rainfall amount during the spring is another meaningful climatic factor for growth trends,while minimal winter temperatures and previous autumn water balance show varying influences.Finally,the growth projections under climate change scenarios RCP4.5 and RCP8.5 foreseen reductions of up to one-third and almost half from the historical mean growth rate.The given estimations should be seen as a critical warning signal calling for immediate conversion from passive to active protection to preserve this unique species.
文摘This study comprehensively examines the multifaceted impact of climate change on Morocco’s ecological sustainability and economic development,focusing on four critical environmental stressors:water stress,deforestation,greenhouse gas emissions,and rising temperatures.These interrelated factors contribute significantly to the degradation of natural ecosystems,the decline in biodiversity,reductions in carbon sequestration,and the disruption of ecological balance.Water scarcity—exacerbated by declining precipitation,excessive groundwater extraction,and rising evapotranspiration—threatens the functionality of wetlands,agricultural productivity,and the livelihoods of rural populations.Deforestation accelerates soil erosion,alters hydrological cycles,and leads to the loss of critical habitats,while greenhouse gas emissions and temperature rise intensify climate variability and increase the frequency of extreme events such as droughts and heatwaves.Using longitudinal data from the World Bank(1990-2022)and advanced econometric modeling through EViews 12 software,this study reveals that water stress and rising temperatures have a statistically significant and negative impact on GDP,indicating that climate pressures undermine Morocco’s economic performance,particularly in climate-sensitive sectors.Conversely,the findings show that deforestation and greenhouse gas emissions are positively correlated with short-term economic growth,reflecting a development pattern heavily reliant on natural resource exploitation and carbon-intensive activities,which may offer temporary gains but pose serious long-term risks to sustainability.These results underscore the urgent need for a paradigm shift toward ecosystem-based adaptation and mitigation strategies,including afforestation,wetland restoration,integrated land and water resource management,and the incorporation of climate resilience into national development frameworks.
基金an integral component of the TRUSTFARM Project,supported by the European Union’s Horizon 2020 research and innovation programThe TRUSTFARM Project was carried out under the European Research Area Network Cofund on Food Systems and Climate(ERA-NET FOSC,862555)+1 种基金built upon and supported by the experience from the Joint Programming Initiative on Agriculture,Food Security&Climate Change(FACCE-JPI)the European Research Area Network Cofund on Long-term Europe-Africa Partnership on Agricultural Research for Development(LEAP-Agri).
文摘Climate change poses substantial challenges to agricultural productivity and sustainability,particularly in Mediterranean and Sub-Saharan Africa regions.Local smallholder farmers’adaptation strategies to climate change are crucial for mitigating these impacts.Therefore,this study investigated the socioeconomic factors influencing smallholder farmers’perceptions and adaptation strategies to climate change in four countries(Morocco,Egypt,Italy,and Senegal)of Mediterranean and Sub-Saharan Africa regions using a binary logistic regression(BLR)model.The results indicated that educational level,farming experience,agricultural income,farm size,participation in agricultural workshops,and training in Good Agricultural Practices(GAPs)significantly impacted smallholder farmers’perceptions and adaptation strategies to climate change(such as smallholder farmers adopting drought-tolerant crops).Higher educational level was linked to the greater possibility of smallholder farmers adopting drought-tolerant crops in Italy and Egypt,while gaps in rural education limited the possibility of smallholder farmers adopting drought-tolerant crops in Morocco and Senegal.Farming experience and agricultural income also enhanced the possibility of smallholder farmers adopting drought-tolerant crops,with notable variations across countries due to systemic barriers such as limited infrastructure in Senegal.Larger farm size and participation in agricultural workshops further improved the possibility of smallholder farmers adopting drought-tolerant crops,particularly in Morocco and Egypt.The findings highlighted the importance of tailored interventions and policy measures to support smallholder farmers in effectively responding to the challenges of climate change under diverse agricultural contexts.By understanding the specific needs and circumstances of smallholder farmers in these countries,policymakers can develop more effective adaptation strategies to enhance agricultural resilience and sustainability under the context of climate change.
文摘We observed the real situations and substances,evaluation,a choice at some households in the Mekong River Delta in order to have a purpose of search,here,they have the home-gardens,the farmers plant fruit trees at the village of province,that is a place which influences by the climate change.We went to the alluvial soil such us:My Hoa village,Thap Muoi district,Dong Thap province to observe the landscape,here(30 households for 1 village),and we took the sample to analyze.We knew the factors such as:a drought,a deficiency of water,a salt water intrusion,a flood.These factors:influence to the trees,many damages,assets,diseases,live of the persons who stay here.We compare many home-gardens having a climate change with the normal home-gardens.Here,especially,we take care to study the flood because it is very important.Thus,we propose the reasonable methods in order to fix the consequence and prevent,we present some illustrations,too.
基金Key Project of National Social Science Fund,No.23AZD032National Natural Science Foundation of China No.42371258Program of China Scholarship Council No.202306850036。
文摘Low-carbon urban development in China can pave the way to achieve the dualcarbon goal.Exploring how land use changes(LUCs)impact carbon storage(CS)under multi-climate scenarios in different urban agglomerations helps to formulate differential scientific carbon mitigation policies.In this regard,this study constructs an integrated model of SD-PLUS-InVEST to simulate LUCs and CS changes under multi-climate change-based scenarios(SSP126,SSP245,SSP585)for three major urban agglomerations(3UAs)in the Yangtze River Economic Belt.Results demonstrate that land use demand in the 3UAs changes considerably in each scenario.Construction land in the 3UAs remains the most important growth category for the coming decade,but its increase varies in different scenarios.CS in the Yangtze River Delta Urban Agglomeration(YRDUA)and Mid-Yangtze River Urban Agglomeration(MYRUA)shows a similar downward trend under different scenarios,with scenario SSP245 decreasing the most,to 184,713.526 Tg and 384,459.729 Tg,respectively.CS in the Cheng-Yu(Chengdu-Chongqing)Urban Agglomeration(CYUA)exhibits the opposite upward trend,with scenario SSP126 increasing the most to 153,007.973 Tg.The major cause of CS loss remains the conversion of forest land to construction land in the YRDUA and MYRUA under different scenarios.However,in the CYUA,the conversion of forest land to cultivated land is the major driver of CS loss under scenario SSP126.In contrast,the conversion of cultivated land to construction land dominantly drives CS loss under scenarios SSP245 and SSP585.The conversion of water body to other land use types is the major cause of CS gain in the YRDUA and MYRUA under different scenarios.At the same time,in the CYUA,the driver is the conversion of cultivated land to forest land.These findings demonstrate the significance of the low-carbon development in urban agglomerations at different development stages at home and abroad.
文摘Extreme temperature events have intensified across Jordan over the past 40 a,increasing risks to agriculture,water availability,urban infrastructure,and public health.The purpose of this study is to assess the long-term spatial trends and regime shifts in extreme temperature indicators across Jordan's climate zones to explore climate adaptation strategies.This study presents a high-resolution and spatially explicit assessment of thermal extremes using daily data from 1982 to 2024 across 45 grid-based study points in Jordan.Thirteen temperature indices,including percentile-based thresholds,duration metrics,and absolute extremes,were computed using RClimDex and analyzed across four Köppen climate zones:hot desert(BWh),hot semi-arid(BSh),cold desert(BWk),and Mediterranean(Csa)climates.The analysis confirmed a statistically significant warming trend:annual mean maximum temperatures increased by 2.198°C,while annual mean minimum temperatures rose by 2.035°C.Cold extremes have sharply declined,with cold days(TX10p)decreasing by 70.0%–80.0%,and the cold spell duration indicator(CSDI)dropping from 12.6 to 4.0 d/a,particularly in the BWk zone.Heat indices intensified across all zones,with warm days(TX90p)increasing by over 300.0%in BWh,warm nights(TN90p)rising by 38.1%,and the warm spell duration indicator(WSDI)extending fourfold,indicating prolonged exposure to heatwaves.Mean value of maximum temperature(TXx)reached 45.600°C in most arid areas,while minimum temperature(TNx)exceeded 31.600°C,highlighting increased nocturnal heat stress.Change-point analysis indicated that 1998 was a pivotal year,marking a structural transition in both cold and warm temperature indices.Subsequent intensifications after 2010 in TN90p,TNx,and mean of daily maximum temperature(Tmaxmean)reflected an ongoing trend toward sustained thermal extremes.In addition to time-series trends,the study employed network-based correlation analysis to explore the coherence among climate indices.Strong positive correlations were observed among TXx,TX90p,and mean of daily minimum temperature(Tminmean)(r≥0.94),as well as among TN90p,Tminmean,and TNx(r≥0.87),indicating a tightly clustered heat subsystem.Duration metrics like the WSDI showed a close alignment with percentile extremes(between WSDI and TX90p;r=0.88),suggesting integrated heatwave behavior.In contrast,cold indices(TX10p,TN90p,frost days,and CSDI)exhibited weak or negative correlations and displayed peripheral positioning in the climate network,indicating their limited role under a warming regime.Absolute extremes showed weak internal linkages,suggesting episodic rather than systemic response characteristics.This structural realignment indicated a shift from a previously balanced thermal profile to a heat-dominated climate system.Regional variations revealed that BWh and BSh were experiencing the steepest warming,while Csa was transitioning more slowly but was showing signs of reduced winter cooling and increased irrigation demands.The findings establish a robust climate baseline for Jordan and offer actionable insights for climate adaptation planning.Recommended measures include precision irrigation,the development of heat-resilient crops,improvements to urban cooling infrastructure,and early warning systems for thermal extremes.By integrating spatial climate zoning,regime shift analysis,and inter-index correlation structures,this study provides a replicable framework for monitoring climatic transformations and informing resilience strategies in arid and semi-arid areas.
基金the Institute Research Centre for Ecological and Forestry Applications (CREAF) of Barcelona that supported the research by the Spanish “Ministerio de Ciencia e Innovacio'n”(MCIN/AEI/ 10.13039/501100011033) (grant agreement No. PID 2021-126679OBI00)partially supported by MIUR Project (PRIN 2020) between WATER and carbon cycles during droug“Unraveling interactionsht and their impact on water resources and forest and grassland ecosySTEMs in the Mediterranean climate (WATERSTEM)”(Project number: 20202WF53Z),“WAFER”at CNR (Consiglio Nazionale delle Ricerche)+3 种基金Priwitzer et al. (2014) (cod. 2020E52THS)-Research Projects of National Relevance funded by the Italian Ministry of University and Research entitled: “Multi-scale observations to predict Forest response to pollution and climate change”(MULTIFOR, project number: 2020E52THS)funding by the project OptForEU Horizon Europe research and innovation programme under grant agreement No. 101060554the project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4-Call for tender No. 3138 of December 16, 2021, rectified by Decree n.3175 of December 18, 2021 of Italian Ministry of UniversityResearch funded by the European UnionationEU under award Number: Project code CN_00000033–Next Gener, Concession Decree No. 1034 of June 17, 2022 adopted by the Italian Ministry of University and Research, CUP B83C22002930006, Project title“National Biodiversity Future Centre-NBFC”
文摘The consequences of climate change continue to threaten European forests,particularly for species located at the edges of their latitudinal and altitudinal ranges.While extensively studied in Central Europe,European beech forests require further investigation to understand how climate change will affect these ecosystems in Mediterranean areas.Proposed silvicultural options increasingly aim at sustainable management to reduce biotic and abiotic stresses and enhance these forest ecosystems'resistance and resilience mechanisms.Process-based models(PBMs)can help us to simulate such phenomena and capture early stress signals while considering the effect of different management approaches.In this study,we focus on estimating sensitivity of two state-of-the-art PBMs forest models by simulating carbon and water fluxes at the stand level to assess productivity changes and feedback resulting from different climatic forcings as well as different management regimes.We applied the 3D-CMCC-FEM and MEDFATE forest models for carbon(C)and water(H_(2)O)fluxes in two sites of the Italian peninsula,Cansiglio in the north and Mongiana in the south,under managed vs.unmanaged scenarios and under current climate and different climatic scenarios(RCP4.5 and RCP8.5).To ensure confidence in the models’results,we preliminary evaluated their performance in simulating C and H_(2)O flux in three additional beech forests of the FLUXNET network along a latitudinal gradient spanning from Denmark to central Italy.The 3D-CMCC-FEM model achieved R^(2)values of 0.83 and 0.86 with RMSEs of 2.53 and 2.05 for C and H_(2)O fluxes,respectively.MEDFATE showed R^(2)values of 0.76 and 0.69 with RMSEs of 2.54 and 3.01.At the Cansiglio site in northern Italy,both models simulated a general increase in C and H_(2)O fluxes under the RCP8.5 climate scenario compared to the current climate.Still,no benefit in managed plots compared to unmanaged ones,as the site does not have water availability limitations,and thus,competition for water is low.At the Mongiana site in southern Italy,both models predict a decrease in C and H_(2)O fluxes and sensitivity to the different climatic forcing compared to the current climate;and an increase in C and H_(2)O fluxes when considering specific management regimes compared to unmanaged scenarios.Conversely,under unmanaged scenarios plots are simulated to experience first signals of mortality prematurely due to water stress(MEDFATE)and carbon starvation(3D-CMCC-FEM)scenarios.In conclusion,while management interventions may be considered a viable solution for the conservation of beech forests under future climate conditions at moister sites like Cansiglio,in drier sites like Mongiana conservation may not lie in management interventions alone.