Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical o...Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical operation,there are still some problems with federated learning applications.Blockchain has the characteristics of decentralization,distribution,and security.The blockchain-enabled federated learning further improve the security and performance of model training,while also expanding the application scope of federated learning.Blockchain has natural financial attributes that help establish a federated learning data market.However,the data of federated learning tasks may be distributed across a large number of resource-constrained IoT devices,which have different computing,communication,and storage resources,and the data quality of each device may also vary.Therefore,how to effectively select the clients with the data required for federated learning task is a research hotspot.In this paper,a two-stage client selection scheme for blockchain-enabled federated learning is proposed,which first selects clients that satisfy federated learning task through attribute-based encryption,protecting the attribute privacy of clients.Then blockchain nodes select some clients for local model aggregation by proximal policy optimization algorithm.Experiments show that the model performance of our two-stage client selection scheme is higher than that of other client selection algorithms when some clients are offline and the data quality is poor.展开更多
In order to support advanced vehicular Internet-of-Things(IoT)applications,information exchanges among different vehicles are required to find efficient solutions for catering to different application requirements in ...In order to support advanced vehicular Internet-of-Things(IoT)applications,information exchanges among different vehicles are required to find efficient solutions for catering to different application requirements in complex and dynamic vehicular environments.Federated learning(FL),which is a type of distributed learning technology,has been attracting great interest in recent years as it performs knowledge exchange among different network entities without a violation of user privacy.However,client selection and networking scheme for enabling FL in dynamic vehicular environments,which determines the communication delay between FL clients and the central server that aggregates the models received from the clients,is still under-explored.In this paper,we propose an edge computing-based joint client selection and networking scheme for vehicular IoT.The proposed scheme assigns some vehicles as edge vehicles by employing a distributed approach,and uses the edge vehicles as FL clients to conduct the training of local models,which learns optimal behaviors based on the interaction with environments.The clients also work as forwarder nodes in information sharing among network entities.The client selection takes into account the vehicle velocity,vehicle distribution,and the wireless link connectivity between vehicles using a fuzzy logic algorithm,resulting in an efficient learning and networking architecture.We use computer simulations to evaluate the proposed scheme in terms of the communication overhead and the information covered in learning.展开更多
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy...With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.展开更多
Federated learning has emerged as a distributed learning paradigm by training at each client and aggregat-ing at a parameter server.System heterogeneity hinders stragglers from responding to the server in time with hu...Federated learning has emerged as a distributed learning paradigm by training at each client and aggregat-ing at a parameter server.System heterogeneity hinders stragglers from responding to the server in time with huge com-munication costs.Although client grouping in federated learning can solve the straggler problem,the stochastic selection strategy in client grouping neglects the impact of data distribution within each group.Besides,current client grouping ap-proaches make clients suffer unfair participation,leading to biased performances for different clients.In order to guaran-tee the fairness of client participation and mitigate biased local performances,we propose a federated dynamic client selec-tion method based on data representativity(FedSDR).FedSDR clusters clients into groups correlated with their own lo-cal computational efficiency.To estimate the significance of client datasets,we design a novel data representativity evalua-tion scheme based on local data distribution.Furthermore,the two most representative clients in each group are selected to optimize the global model.Finally,the DYNAMIC-SELECT algorithm updates local computational efficiency and data representativity states to regroup clients after periodic average aggregation.Evaluations on real datasets show that FedS-DR improves client participation by 27.4%,37.9%,and 23.3%compared with FedAvg,TiFL,and FedSS,respectively,tak-ing fairness into account in federated learning.In addition,FedSDR surpasses FedAvg,FedGS,and FedMS by 21.32%,20.4%,and 6.90%,respectively,in local test accuracy variance,balancing the performance bias of the global model across clients.展开更多
Federated learning is proposed to train distributed data in a safe manner by avoiding to send data to server.The server maintains a global model and sends it to clients in each communication round,and then aggregates ...Federated learning is proposed to train distributed data in a safe manner by avoiding to send data to server.The server maintains a global model and sends it to clients in each communication round,and then aggregates the updated local models to derive a new global model.Traditionally,the clients are randomly selected in each round and aggregation is based on weighted averaging.Researches show that the performance on IID data is satisfactory while significant accuracy drop can be observed for Non-IID data.In this paper,we explore the reasons and propose a novel aggregation approach for Non-IID data in federated learning.Specifically,we propose to group the clients according to classes of data they have,and select one set in each communication round.Local models from the same set are averaged as usual and the updated global model is sent to next group of clients for further training.In this way,the parameters are only averaged on similar clients and passed among different groups.Evaluation shows that the proposed scheme has advantages in terms of model accuracy and convergence speed with highly unbalanced data distribution and complex models.展开更多
The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID da...The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID data,which employs the client similarity calculated by relevant metrics for clustering.Unfortunately,the existing CFL methods only pursue a single accuracy improvement,but ignore the convergence rate.Additionlly,the designed client selection strategy will affect the clustering results.Finally,traditional semi-supervised learning changes the distribution of data on clients,resulting in higher local costs and undesirable performance.In this paper,we propose a novel CFL method named ASCFL,which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data.To deal with unlabeled data,the prediction labels strategy predicts labels by encoders.The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round.What is more,the similarity-based clustering strategy uses a new indicator to measure the similarity between clients.Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets.展开更多
文摘Federated learning enables data owners in the Internet of Things(IoT)to collaborate in training models without sharing private data,creating new business opportunities for building a data market.However,in practical operation,there are still some problems with federated learning applications.Blockchain has the characteristics of decentralization,distribution,and security.The blockchain-enabled federated learning further improve the security and performance of model training,while also expanding the application scope of federated learning.Blockchain has natural financial attributes that help establish a federated learning data market.However,the data of federated learning tasks may be distributed across a large number of resource-constrained IoT devices,which have different computing,communication,and storage resources,and the data quality of each device may also vary.Therefore,how to effectively select the clients with the data required for federated learning task is a research hotspot.In this paper,a two-stage client selection scheme for blockchain-enabled federated learning is proposed,which first selects clients that satisfy federated learning task through attribute-based encryption,protecting the attribute privacy of clients.Then blockchain nodes select some clients for local model aggregation by proximal policy optimization algorithm.Experiments show that the model performance of our two-stage client selection scheme is higher than that of other client selection algorithms when some clients are offline and the data quality is poor.
基金This research was supported in part by the National Natural Science Foundation of China under Grant No.62062031 and 61877053in part by Inner Mongolia natural science foundation grant number 2019MS06035,and Inner Mongolia Science and Technology Major Project,China+1 种基金in part by ROIS NII Open Collaborative Research 21S0601in part by JSPS KAKENHI grant numbers 18KK0279,19H04093,20H00592,and 21H03424.
文摘In order to support advanced vehicular Internet-of-Things(IoT)applications,information exchanges among different vehicles are required to find efficient solutions for catering to different application requirements in complex and dynamic vehicular environments.Federated learning(FL),which is a type of distributed learning technology,has been attracting great interest in recent years as it performs knowledge exchange among different network entities without a violation of user privacy.However,client selection and networking scheme for enabling FL in dynamic vehicular environments,which determines the communication delay between FL clients and the central server that aggregates the models received from the clients,is still under-explored.In this paper,we propose an edge computing-based joint client selection and networking scheme for vehicular IoT.The proposed scheme assigns some vehicles as edge vehicles by employing a distributed approach,and uses the edge vehicles as FL clients to conduct the training of local models,which learns optimal behaviors based on the interaction with environments.The clients also work as forwarder nodes in information sharing among network entities.The client selection takes into account the vehicle velocity,vehicle distribution,and the wireless link connectivity between vehicles using a fuzzy logic algorithm,resulting in an efficient learning and networking architecture.We use computer simulations to evaluate the proposed scheme in terms of the communication overhead and the information covered in learning.
文摘With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments.
基金This work is supported by the National Key Research and Development Program of China under Grant No.2022YFC3005401the Key Research and Development Program of Yunnan Province of China under Grant No.202203AA080009+1 种基金the Transformation Program of Scientific and Technological Achievements of Jiangsu Province of China under Grant No.BA2021002the Key Research and Development Program of Jiangsu Province of Chin under Grant No.BE2020729.
文摘Federated learning has emerged as a distributed learning paradigm by training at each client and aggregat-ing at a parameter server.System heterogeneity hinders stragglers from responding to the server in time with huge com-munication costs.Although client grouping in federated learning can solve the straggler problem,the stochastic selection strategy in client grouping neglects the impact of data distribution within each group.Besides,current client grouping ap-proaches make clients suffer unfair participation,leading to biased performances for different clients.In order to guaran-tee the fairness of client participation and mitigate biased local performances,we propose a federated dynamic client selec-tion method based on data representativity(FedSDR).FedSDR clusters clients into groups correlated with their own lo-cal computational efficiency.To estimate the significance of client datasets,we design a novel data representativity evalua-tion scheme based on local data distribution.Furthermore,the two most representative clients in each group are selected to optimize the global model.Finally,the DYNAMIC-SELECT algorithm updates local computational efficiency and data representativity states to regroup clients after periodic average aggregation.Evaluations on real datasets show that FedS-DR improves client participation by 27.4%,37.9%,and 23.3%compared with FedAvg,TiFL,and FedSS,respectively,tak-ing fairness into account in federated learning.In addition,FedSDR surpasses FedAvg,FedGS,and FedMS by 21.32%,20.4%,and 6.90%,respectively,in local test accuracy variance,balancing the performance bias of the global model across clients.
基金supported by Shandong Provincial Natural Sci-ence Foundation,China(ZR2020LZH001)NSFC-Shandong Joint Fund,China(U1806203)Major scientific and technological innovation project in Shandong Province,China(2019JZZY010449).
文摘Federated learning is proposed to train distributed data in a safe manner by avoiding to send data to server.The server maintains a global model and sends it to clients in each communication round,and then aggregates the updated local models to derive a new global model.Traditionally,the clients are randomly selected in each round and aggregation is based on weighted averaging.Researches show that the performance on IID data is satisfactory while significant accuracy drop can be observed for Non-IID data.In this paper,we explore the reasons and propose a novel aggregation approach for Non-IID data in federated learning.Specifically,we propose to group the clients according to classes of data they have,and select one set in each communication round.Local models from the same set are averaged as usual and the updated global model is sent to next group of clients for further training.In this way,the parameters are only averaged on similar clients and passed among different groups.Evaluation shows that the proposed scheme has advantages in terms of model accuracy and convergence speed with highly unbalanced data distribution and complex models.
基金supported by the National Key Research and Development Program of China(No.2019YFC1520904)the National Natural Science Foundation of China(No.61973250).
文摘The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID data,which employs the client similarity calculated by relevant metrics for clustering.Unfortunately,the existing CFL methods only pursue a single accuracy improvement,but ignore the convergence rate.Additionlly,the designed client selection strategy will affect the clustering results.Finally,traditional semi-supervised learning changes the distribution of data on clients,resulting in higher local costs and undesirable performance.In this paper,we propose a novel CFL method named ASCFL,which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data.To deal with unlabeled data,the prediction labels strategy predicts labels by encoders.The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round.What is more,the similarity-based clustering strategy uses a new indicator to measure the similarity between clients.Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets.