Metamorphic mechanism has the advantages of variable topology and variable degrees of freedom, which can realize the requirements of multi-conditions and multi-tasks, and has a good application prospect. The configura...Metamorphic mechanism has the advantages of variable topology and variable degrees of freedom, which can realize the requirements of multi-conditions and multi-tasks, and has a good application prospect. The configuration transformation is prominent feature of the metamorphic mechanism. The number of constraints or properties of the kinematic pairs provided by the metamorphic kinematic pairs will change under certain conditions, its dynamic performance is much more complex than that of traditional kinematic pairs with immutable constraints. However, the clearance model about traditional kinematic pairs with immutable constraints established by long-term research is difficult to be directly applied to the metachromatic kinematic pairs. Referring to the experience of the traditional kinematic pairs with immutable constraints, the continuous contact model of Metamorphic Groove pin pair with clearance is established. According to the traditional continuous contact model of the kinematic pairs with immutable constraints, the forces between the elements of kinematic pair of the mechanism with clearance and the ideal mechanism without clearance are regarded as the same, and the inertia force and inertia moment of the components are also calculated according to the acceleration of the ideal mechanism. The clearance is regarded as a massless virtual bar with length r. For the rotating pair part, the massless virtual bar length r is the difference between the radius of the shaft and the hole, and for the sliding pair part, the massless virtual bar length r is half of the difference between the height of the slider and the guide groove. According to the new mechanism without gap after adding the imaginary bar, kinetic energy and potential energy of the system are calculated for the two configurations of mechanism with metamorphic Groove pin pair with clearance. The kinetic energy and potential energy of the system are calculated according to the new mechanism without clearance after adding the massless virtual bar. The kinetic energy, potential energy and generalized force are substituted into the Lagrangian equation to obtain the motion equation of the metamorphic mechanism, which lays the foundation for the dynamic performance study of the mechanism with metamorphic groove pin pair with clearance.展开更多
The Three Gorges Project(TGP) ship lift employs 4 safety mechanisms, of which one consists of a rotary locking screw and a nut jaw column. The thread pair clearance(TPC) of safety mechanisms is set at 60 mm. Owing...The Three Gorges Project(TGP) ship lift employs 4 safety mechanisms, of which one consists of a rotary locking screw and a nut jaw column. The thread pair clearance(TPC) of safety mechanisms is set at 60 mm. Owing to influential factors,the TPC changes randomly in the upward/downward-stroke of the ship chamber. If it diminished to 0, the safety mechanism would be jammed, thus resulting in disastrous accidents. By the bearing test of the drive system, 7 influential factors have been studied; 15 other influential factors(including 8 factors of manufacture and installation deviation, 3 factors of chamber offset, 2 factors of external load and 2 factors of wear) have been analyzed based on the design data. Results by the limit superposition reveal that the TPC change varies from -43.8 mm to +48.4 mm when the water level of the chamber ranges from 3.4 m to 3.6 m. According to the Gaussian distribution, the probability of the TPC change varied from -53.7 mm to +58.8 mm in the most detrimental status is99.74%, therefore, the TPC remains in a safe condition. This paper puts forward that two-phase operation of the drive system should be adopted so as to reduce the maximum TPC change to -44.6 mm.展开更多
文摘Metamorphic mechanism has the advantages of variable topology and variable degrees of freedom, which can realize the requirements of multi-conditions and multi-tasks, and has a good application prospect. The configuration transformation is prominent feature of the metamorphic mechanism. The number of constraints or properties of the kinematic pairs provided by the metamorphic kinematic pairs will change under certain conditions, its dynamic performance is much more complex than that of traditional kinematic pairs with immutable constraints. However, the clearance model about traditional kinematic pairs with immutable constraints established by long-term research is difficult to be directly applied to the metachromatic kinematic pairs. Referring to the experience of the traditional kinematic pairs with immutable constraints, the continuous contact model of Metamorphic Groove pin pair with clearance is established. According to the traditional continuous contact model of the kinematic pairs with immutable constraints, the forces between the elements of kinematic pair of the mechanism with clearance and the ideal mechanism without clearance are regarded as the same, and the inertia force and inertia moment of the components are also calculated according to the acceleration of the ideal mechanism. The clearance is regarded as a massless virtual bar with length r. For the rotating pair part, the massless virtual bar length r is the difference between the radius of the shaft and the hole, and for the sliding pair part, the massless virtual bar length r is half of the difference between the height of the slider and the guide groove. According to the new mechanism without gap after adding the imaginary bar, kinetic energy and potential energy of the system are calculated for the two configurations of mechanism with metamorphic Groove pin pair with clearance. The kinetic energy and potential energy of the system are calculated according to the new mechanism without clearance after adding the massless virtual bar. The kinetic energy, potential energy and generalized force are substituted into the Lagrangian equation to obtain the motion equation of the metamorphic mechanism, which lays the foundation for the dynamic performance study of the mechanism with metamorphic groove pin pair with clearance.
基金Supported by the Key Research Program of State Power Corporation(SPKJ016-06)the Key Scientific Research Project of Hubei Province(2004AC1O1D31)the Key Scientific Research Project of China Three Gorges Corporation(0722018)
文摘The Three Gorges Project(TGP) ship lift employs 4 safety mechanisms, of which one consists of a rotary locking screw and a nut jaw column. The thread pair clearance(TPC) of safety mechanisms is set at 60 mm. Owing to influential factors,the TPC changes randomly in the upward/downward-stroke of the ship chamber. If it diminished to 0, the safety mechanism would be jammed, thus resulting in disastrous accidents. By the bearing test of the drive system, 7 influential factors have been studied; 15 other influential factors(including 8 factors of manufacture and installation deviation, 3 factors of chamber offset, 2 factors of external load and 2 factors of wear) have been analyzed based on the design data. Results by the limit superposition reveal that the TPC change varies from -43.8 mm to +48.4 mm when the water level of the chamber ranges from 3.4 m to 3.6 m. According to the Gaussian distribution, the probability of the TPC change varied from -53.7 mm to +58.8 mm in the most detrimental status is99.74%, therefore, the TPC remains in a safe condition. This paper puts forward that two-phase operation of the drive system should be adopted so as to reduce the maximum TPC change to -44.6 mm.