期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
ON POTENT ELEMENTS AND PSEUDO CLEAN RINGS
1
作者 DING Yan GAO Han-peng +2 位作者 LIU Xin-yi YAN Zi-yi ZHANG Ting 《数学杂志》 2025年第1期39-47,共9页
In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings... In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings are clean.Furthermore,we prove pseudo clean rings are directly finite and have stable range one. 展开更多
关键词 clean rings strongly J-clean rings pseudo clean rings potent elements
在线阅读 下载PDF
On Weakly r-Clean Rings
2
作者 Hanpeng GAO Xiaobin YIN 《Journal of Mathematical Research with Applications》 CSCD 2017年第5期543-549,共7页
As generalization of r-clean rings and weakly clean rings, we define a ring R is weakly r-clean if for any a E R there exist an idempotent e and a regular element r such that a = r + e or a = r - e. Some properties a... As generalization of r-clean rings and weakly clean rings, we define a ring R is weakly r-clean if for any a E R there exist an idempotent e and a regular element r such that a = r + e or a = r - e. Some properties and examples of weakly r-clean rings are given. Furthermore, we prove the weakly clean and weakly r-clean rings are equivalent for abelian rings. 展开更多
关键词 r-clean rings weakly clean rings weakly r-clean rings regular rings
原文传递
n-Clean Rings with Involutions
3
作者 Jian CUI Xiaobin YIN 《Journal of Mathematical Research with Applications》 CSCD 2016年第2期194-200,共7页
A *-ring is called *-clean if every element of the ring can be written as the sum of a projection and a unit. For an integer n ≥ 1, we call a *-ring R n-*-clean if for any a ∈ R,a = p + u1 + ···... A *-ring is called *-clean if every element of the ring can be written as the sum of a projection and a unit. For an integer n ≥ 1, we call a *-ring R n-*-clean if for any a ∈ R,a = p + u1 + ··· + unwhere p is a projection and ui are units for all i. Basic properties of n-*-clean rings are considered, and a number of illustrative examples of 2-*-clean rings which are not *-clean are provided. In addition, extension properties of n-*-clean rings are discussed. 展开更多
关键词 *-clean ring n-*-clean ring clean ring n-clean ring
原文传递
On weakly nil-clean rings 被引量:3
4
作者 M. Tamer KOSAN Yiqiang ZHOU 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第4期949-955,共7页
We obtain the structure of the rings in which every element is either a sum or a difference of a nilpotent and an idempotent that commute. This extends the structure theorems of a commutative weakly nil-clean ring, of... We obtain the structure of the rings in which every element is either a sum or a difference of a nilpotent and an idempotent that commute. This extends the structure theorems of a commutative weakly nil-clean ring, of an abelian weakly nil-clean ring, and of a strongly nil-clean ring. As applications, this result is used to determine the 2-primal rings R such that the matrix ring Mn(R) is weakly nil-clean, and to show that the endomorphism ring EndD(V) over a vector space VD is weakly nil-clean if and only if it is nil-clean or dim(V) = 1 with D Z3. 展开更多
关键词 Nil-clean ring strongly nil-clean ring weakly nil-clean ring matrix ring endomorphism ring of a vector space 2-primal ring
原文传递
拟J-*-clean环
5
作者 李筱璇 殷晓斌 《山东大学学报(理学版)》 北大核心 2025年第11期70-78,共9页
若该环中所有元素都表示为一个拟投射元与一个Jacobson根中元素之和(且它们可以交换),称该环是(强)拟J-*-clean环。本文研究了拟J-*-clean环的基本性质以及其与其他*-环的关系,证明R是强拟J-*-clean环当且仅当R是强*-clean环且R/J(R)是... 若该环中所有元素都表示为一个拟投射元与一个Jacobson根中元素之和(且它们可以交换),称该环是(强)拟J-*-clean环。本文研究了拟J-*-clean环的基本性质以及其与其他*-环的关系,证明R是强拟J-*-clean环当且仅当R是强*-clean环且R/J(R)是强拟J-*-clean环,当且仅当R/J(R)是强拟J-*-clean环,R中投射元是中心的且投射元模J(R)可提升。 展开更多
关键词 clean *-环 拟J-clean 拟J-*-clean 强拟J-*-clean
原文传递
On Semiclean Group Rings
6
作者 Xianmei SONG Yuxia MEI 《Journal of Mathematical Research with Applications》 CSCD 2017年第2期194-198,共5页
A ring R with unity is called semiclean, if each of its elements is the sum of a unit and a periodic. Every clean ring is semiclean. It is not easy to characterize a semiclean group ring in general. Our purpose is to ... A ring R with unity is called semiclean, if each of its elements is the sum of a unit and a periodic. Every clean ring is semiclean. It is not easy to characterize a semiclean group ring in general. Our purpose is to consider the following question: If G is a locally finite group or a cyclic group of order 3, then when is RG semiclean? Some known results on clean group rings are generalized. 展开更多
关键词 clean ring semiclean ring group ring locally finite group
原文传递
Uniquely strongly clean triangular matrix rings
7
作者 崔建 陈建龙 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期463-465,共3页
An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of... An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of R is uniquely strongly clean. The uniquely strong cleanness of the triangular matrix ring is studied. Let R be a local ring. It is shown that any n × n upper triangular matrix ring over R is uniquely strongly clean if and only if R is uniquely bleached and R/J(R) ≈Z2. 展开更多
关键词 uniquely strongly clean ring uniquely bleached local ring triangular matrix ring
在线阅读 下载PDF
Uniquely Strongly Clean Group Rings 被引量:1
8
作者 WANG XIU-LAN 《Communications in Mathematical Research》 CSCD 2012年第1期17-25,共9页
A ring R is called clean if every element is the sum of an idempotent and a unit, and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute... A ring R is called clean if every element is the sum of an idempotent and a unit, and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute. In this article, some conditions on a ring R and a group G such that RG is clean are given. It is also shown that if G is a locally finite group, then the group ring RG is USC if and only if R is USC, and G is a 2-group. The left uniquely exchange group ring, as a middle ring of the uniquely clean ring and the USC ring, does not possess this property, and so does the uniquely exchange group ring. 展开更多
关键词 clean ring group ring P-GROUP USC ring
在线阅读 下载PDF
Centrally clean elements and central Drazin inverses in a ring
9
作者 Li Wende Chen Jianlong 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期315-322,共8页
Element a in ring R is called centrally clean if it is the sum of central idempotent e and unit u.Moreover,a=e+u is called a centrally clean decomposition of a and R is called a centrally clean ring if every element o... Element a in ring R is called centrally clean if it is the sum of central idempotent e and unit u.Moreover,a=e+u is called a centrally clean decomposition of a and R is called a centrally clean ring if every element of R is centrally clean.First,some characterizations of centrally clean elements are given.Furthermore,some properties of centrally clean rings,as well as the necessary and sufficient conditions for R to be a centrally clean ring are investigated.Centrally clean rings are closely related to the central Drazin inverses.Then,in terms of centrally clean decomposition,the necessary and sufficient conditions for the existence of central Drazin inverses are presented.Moreover,the central cleanness of special rings,such as corner rings,the ring of formal power series over ring R,and a direct product ∏ R_(α) of ring R_(α),is analyzed.Furthermore,the central group invertibility of combinations of two central idempotents in the algebra over a field is investigated.Finally,as an application,an example that lists all invertible,central group invertible,group invertible,central Drazin invertible elements,and centrally clean elements of the group ring Z_(2)S_(3) is given. 展开更多
关键词 centrally clean element centrally clean ring central Drazin inverse central group inverse
在线阅读 下载PDF
强2-幂等J-clean环
10
作者 王尧 陈蒋欢 任艳丽 《山东大学学报(理学版)》 CSCD 北大核心 2024年第12期1-10,共10页
一个环R称为强2-幂等J-clean环,如果对任意a∈R,都存在e,f∈Id(R),j∈J(R)使得a=e+f+j,且e,f,j其中任意两个都满足乘法可交换性。给出它们的基本性质,以及和相关环的关系,进一步丰富clean环理论。
关键词 clean J-clean 强2-幂等J-clean
原文传递
关于*r-clean环
11
作者 覃健 应志领 周华 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期30-32,共3页
称对合环为*r-clean环是指环中任一元素都可表示为投射子和*-正则元的和.研究了该环的一些扩张性质,并给出了*-阿贝尔的*r-clean环中元素的刻画.
关键词 *r-clean *-clean *-正则环
在线阅读 下载PDF
J^(#)-U_(c)-clean环与强J^(#)-U_(c)-clean环
12
作者 靳丹亚 黄涛 崔建 《南通大学学报(自然科学版)》 CAS 2024年第1期87-94,共8页
设R是一个环,如果U(R)=U_(c)(R)+J^(#)(R),则称R是GU_(c)J环;如果对于任意a∈R,都存在g∈U_(c)(R),p^(2)=p∈R,d∈J^(#)(R)使得ag=p+d(且ap=pa),则称R是(强)J^(#)-U_(c)-clean环。GU_(c)J环和J^(#)-U_(c)-clean环分别是GUJ环和GJ-clean... 设R是一个环,如果U(R)=U_(c)(R)+J^(#)(R),则称R是GU_(c)J环;如果对于任意a∈R,都存在g∈U_(c)(R),p^(2)=p∈R,d∈J^(#)(R)使得ag=p+d(且ap=pa),则称R是(强)J^(#)-U_(c)-clean环。GU_(c)J环和J^(#)-U_(c)-clean环分别是GUJ环和GJ-clean环的真推广。文章研究了GU_(c)J环的基本性质,证明了R是GU_(c)J环当且仅当R/J是U_(c)U环且U_(c)(R/J)=(U_(c)(R)+J)/J,R是U_(c)J环当且仅当R是GU_(c)J环且R/J是reduced的。此外,给出了(强)J^(#)-U_(c)-clean环的例子,得到了(强)J^(#)-U_(c)-clean环的性质和一些等价刻画,证明了若R是一个交换环,则R是GJ-clean环当且仅当存在整数n≥1使得T_(n)(R)是GJ-clean环,当且仅当存在整数n≥2使得T_(n)(R)是J^(#)-U_(c)-clean环。进一步地,研究了强J^(#)-U_(c)-clean环的Morita不变性。 展开更多
关键词 GUJ环 GJ-clean GU_(c)J环 J^(#)-U_(c)-clean 强J^(#)-U_(c)-clean
在线阅读 下载PDF
NGR-clean环
13
作者 王志强 吴俊 《宿州学院学报》 2024年第3期9-14,21,共7页
若环R中的任意元素都能表示成一个(强)π-正则元和一个幂零元之和,则称环R是(强)NGR-clean环。研究给出(强)NGR-clean环的一些基本性质,证明了若I是环R的诣零理想,则R是NGR-clean环当且仅当R/I是NGR-clean环。此外,还研究了(强)NGR-clea... 若环R中的任意元素都能表示成一个(强)π-正则元和一个幂零元之和,则称环R是(强)NGR-clean环。研究给出(强)NGR-clean环的一些基本性质,证明了若I是环R的诣零理想,则R是NGR-clean环当且仅当R/I是NGR-clean环。此外,还研究了(强)NGR-clean环与一些环类之间的联系以及(强)NGR-clean环的几类扩张。 展开更多
关键词 NR-clean Π-正则环 NGR-clean 强NGR-clean
在线阅读 下载PDF
拟-Clean环 被引量:4
14
作者 王尧 刘苏 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2007年第2期131-134,共4页
1972年Nicholson提出了Clean环的概念,之后又有人根据Clean环的概念给出了G-Clean环,N-Clean环的概念,并且研究了它们的一些性质.本文提出了拟-Clean环的概念,研究了-Clean环的一些性质,同时对具有一对零同态的Morita Context环C=A V,... 1972年Nicholson提出了Clean环的概念,之后又有人根据Clean环的概念给出了G-Clean环,N-Clean环的概念,并且研究了它们的一些性质.本文提出了拟-Clean环的概念,研究了-Clean环的一些性质,同时对具有一对零同态的Morita Context环C=A V,关于拟-Clean性和G-Clean性讨论了C与A,B之间的一些性质关系. 展开更多
关键词 拟正则元 拟-clean 拟-clean
在线阅读 下载PDF
唯一g(x)-clean环 被引量:1
15
作者 孙晓青 李吉文 沈晓芹 《数学杂志》 CSCD 北大核心 2014年第4期739-746,共8页
本文研究了唯一g(x)-clean环的性质与结构.利用g(x)-clean环的方法,得到了唯一g(x)-clean环与g(x)-clean环的关系,唯一g(x)-clean环与一类特殊的生成环的等价条件,以及斜Hurwitz级数环的g(x)-clean性,推广了g(x)-clean环的研究结果.
关键词 g(x)-clean 唯一clean 斜Hurwitz级数
在线阅读 下载PDF
关于环的Q-clean性及Q-clean corner的讨论 被引量:1
16
作者 孙晓青 肖燕婷 崔冉冉 《山东大学学报(理学版)》 CAS CSCD 北大核心 2020年第2期79-83,共5页
利用拟逆元,定义了Q-clean环和Q-clean corner,研究了环的Q-clean性及Q-clean corner,得到了abelian Q-clean的等价条件,此外一些结论对应到Clean环上也是成立的。
关键词 拟逆元 clean CORNER
原文传递
拟J-clean环 被引量:1
17
作者 王尧 陈蒋欢 任艳丽 《山东大学学报(理学版)》 CAS CSCD 北大核心 2023年第6期1-8,共8页
通过拟幂等元引进拟J-clean环的概念,给出拟J-clean环的若干例子,讨论了它们的基本性质。证明了:(1)若R是拟J-clean环,则全矩阵环Mn(R)是拟J-clean环;(2)一个环R是UJ-环,当且仅当R中的拟clean元都是拟J-clean元;(3)设R是一个交换环,则R... 通过拟幂等元引进拟J-clean环的概念,给出拟J-clean环的若干例子,讨论了它们的基本性质。证明了:(1)若R是拟J-clean环,则全矩阵环Mn(R)是拟J-clean环;(2)一个环R是UJ-环,当且仅当R中的拟clean元都是拟J-clean元;(3)设R是一个交换环,则R是拟J-clean环的充分必要条件是若I是R的包含于J(R)的理想且使得R/I是不可分解环,则R/I=J(R/I)∪U(R/I)。 展开更多
关键词 拟幂等元 拟J-clean UJ-环
原文传递
Q-clean环的结构及其应用(英文) 被引量:2
18
作者 孙晓青 刘霞 花秀娟 《纯粹数学与应用数学》 2019年第2期215-222,共8页
定义了Q-clean环,并对它做了深入的研究,得到了Q-clean环的很多特性.特别的,证明了在2可逆的Q-clean环中,每个元素都可以表示为一个拟可逆元和一个幂等元的和.还得到了Q-clean环的一个充分条件,即如果环R的每个元素可以写成x=xux, u∈Rq... 定义了Q-clean环,并对它做了深入的研究,得到了Q-clean环的很多特性.特别的,证明了在2可逆的Q-clean环中,每个元素都可以表示为一个拟可逆元和一个幂等元的和.还得到了Q-clean环的一个充分条件,即如果环R的每个元素可以写成x=xux, u∈Rq^-1,则R是Q-clean环.最后,证明了Q-clean环的理想仍然是Q-clean的. 展开更多
关键词 拟可逆 Q-clean 理想
在线阅读 下载PDF
Clean一般环的几个结果 被引量:1
19
作者 崔书英 陈卫星 《大学数学》 北大核心 2008年第1期66-69,共4页
证明了一般环I是Clean一般环当且仅当I上的形式幂级数一般环I[[x]]是Clean一般环;一般环I上的多项式环I[x]是Clean一般环当且仅当I是诣零的.引入了强Clean一般环的概念,它是强Clean环的推广.并证明了强π-正则的一般环是强Clean一般环.
关键词 强矿正则环 clean 替换环
在线阅读 下载PDF
一般Clean环的扩张 被引量:3
20
作者 姜侠 《兰州交通大学学报》 CAS 2006年第3期149-150,共2页
有单位元的结合环R称为clean环,如果R中的每个元素都可以写成一个幂等元与一个单位的和的形式.W.K.Nicholson,Y.Zhou[1]给出了一般clean环的定义.在此基础上讨论了一般clean环的几个扩张性质,得到如下结论:1)一般环I是一般clean环当且仅... 有单位元的结合环R称为clean环,如果R中的每个元素都可以写成一个幂等元与一个单位的和的形式.W.K.Nicholson,Y.Zhou[1]给出了一般clean环的定义.在此基础上讨论了一般clean环的几个扩张性质,得到如下结论:1)一般环I是一般clean环当且仅当I的形式幂级数环是一般clean环当且仅当I的斜幂级数环是一般clean环.2)若I是一般clean环,则对任意n≥1,均有I[x]/<xn+1>是一般clean环. 展开更多
关键词 一般clean 形式幂级数环 斜幂级数环
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部