期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
A New Approach to Predict Financial Failure: Classification and Regression Trees (CART) 被引量:1
1
作者 Ayse Guel Yllgoer UEmit Dogrul Guelhan Orekici Temel 《Journal of Modern Accounting and Auditing》 2011年第4期329-339,共11页
The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more ... The increase of competition, economic recession and financial crises has increased business failure and depending on this the researchers have attempted to develop new approaches which can yield more correct and more reliable results. The classification and regression tree (CART) is one of the new modeling techniques which is developed for this purpose. In this study, the classification and regression trees method is explained and tested the power of the financial failure prediction. CART is applied for the data of industry companies which is trade in Istanbul Stock Exchange (ISE) between 1997-2007. As a result of this study, it has been observed that, CART has a high predicting power of financial failure one, two and three years prior to failure, and profitability ratios being the most important ratios in the prediction of failure. 展开更多
关键词 business failure financial distress PREDICTION classification and regression trees cart
在线阅读 下载PDF
A retinal blood vessel extraction algorithm based on CART decision tree and improved AdaBoost
2
作者 DIWU Peng-peng HU Ya-qi 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第1期61-68,共8页
This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) t... This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm. 展开更多
关键词 classification and regression tree (cart) improved adptive boosting (AdaBoost) retinal blood vessel local binary pattern (LBP) texture
在线阅读 下载PDF
Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage:A Case Study from Beijing Municipality,China 被引量:6
3
作者 HU Deyong CHEN Shanshan +1 位作者 QIAO Kun CAO Shisong 《Chinese Geographical Science》 SCIE CSCD 2017年第4期614-625,共12页
The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS val... The sub-pixel impervious surface percentage(SPIS) is the fraction of impervious surface area in one pixel,and it is an important indicator of urbanization.Using remote sensing data,the spatial distribution of SPIS values over large areas can be extracted,and these data are significant for studies of urban climate,environment and hydrology.To develop a stabilized,multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons,an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree(CART) algorithm.First,models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data.The optimal model was selected through the analysis and comparison of the assessed accuracy of these models.Subsequently,multi-temporal SPIS mapping was carried out based on the optimal model.The results are as follows:1) multi-seasonal images and nighttime light(NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality,where the intra-annual variability in vegetation is distinct.The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively.NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces.After testing,the SPIS modeling correlation coefficient(r) is approximately 0.86,the average error(AE) is approximately 12.8%,and the relative error(RE) is approximately 0.39.2) The SPIS results have been divided into areas with high-density impervious cover(70%–100%),medium-density impervious cover(40%–70%),low-density impervious cover(10%–40%) and natural cover(0%–10%).The SPIS model performed better in estimating values for high-density urban areas than other categories.3) Multi-temporal SPIS mapping(1991–2016) was conducted based on the optimized SPIS results for 2005.After testing,AE ranges from 12.7% to 15.2%,RE ranges from 0.39 to 0.46,and r ranges from 0.81 to 0.86.It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation. 展开更多
关键词 impervious surface impervious surface percentage classification and regression treecart sub-pixel sub-pixel impervious surface percentage(SPIS) time series
在线阅读 下载PDF
列线图与CART决策树模型对膝关节置换术后急性疼痛风险预测中的效能比较 被引量:1
4
作者 马超 韩影 程旻桦 《新疆医科大学学报》 2025年第2期195-202,共8页
目的分别构建预测膝关节置换术(TKA)后急性疼痛(APP)风险的列线图与分类与回归树(CART)决策树模型,并比较两种模型在对TKA后APP风险预测中的预测效能。方法以274例膝关节骨性关节炎(KOA)患者为研究对象,均于2018年3月至2024年4月在本院... 目的分别构建预测膝关节置换术(TKA)后急性疼痛(APP)风险的列线图与分类与回归树(CART)决策树模型,并比较两种模型在对TKA后APP风险预测中的预测效能。方法以274例膝关节骨性关节炎(KOA)患者为研究对象,均于2018年3月至2024年4月在本院进行TKA治疗,根据术后是否发生APP将患者分为APP组(n=98)和非APP组(n=176),对两组患者进行单因素分析。根据单因素分析结果进行Logistic回归分析TKA后APP的危险因素,根据危险因素绘制列线图模型;根据单因素分析结果进行CART决策树模型建立。绘制两种模型的受试者工作特征(ROC)曲线并对两种模型的预测效能进行DeLong检验。结果单因素分析结果显示,两组患者在年龄、体质指数(BMI)、糖尿病、西安大略和麦克马斯特大学骨关节炎指数(WOMAC)、术前疼痛灾难化量表(PCS)评分、术前视觉模拟评分(VAS)、止血带使用时间、神经阻滞、术后使用镇痛泵方面比较差异具有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,BMI≥25 kg/m^(2)、糖尿病、PCS评分≥27分、VAS评分≥5分、术后未使用镇痛泵为TKA后APP的独立危险因素(P<0.05)。基于多因素Logistic回归结果采用R软件绘制列线图模型。将单因素分析中差异具有统计学意义的相关因素纳入CART决策树模型,最终模型筛选出5个特征,包括BMI≥25 kg/m^(2)、糖尿病、WOMAC≥48分、术前使用神经阻滞、未使用术后镇痛泵。绘制两种模型的ROC曲线,结果显示列线图模型和CART决策树模型的AUC分别为0.858和0.911,灵敏度分别为81.88%和86.34%,特异度分别为82.91%和87.62%,阳性预测值分别为75.43%和80.69%,阴性预测值分别为82.94%和89.27%,预测准确率分别为83.31%和89.75%。两种模型AUC值相比差异具有统计学意义(Z=9.864,P<0.001)。结论两种模型均对TKA后APP风险具有较好的预测效能,CART决策树预测效能优于列线图模型。 展开更多
关键词 膝关节置换术 术后急性疼痛 预测效能 列线图模型 cart决策树模型
暂未订购
Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features 被引量:1
5
作者 N.Kins Burk Sunil R.Ganesan B.Sankaragomathi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第2期351-375,共25页
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ... Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO. 展开更多
关键词 OBSTRUCTIVE sleep APNEA photoplethysmogram SIGNAL time DOMAIN FEATURES frequency DOMAIN FEATURES classification and regression tree CLASSIFIER particle swarm optimization algorithm.
暂未订购
基于CART决策树的110 kV供电区域分布式光伏承载能力测算模型 被引量:2
6
作者 代守乐 李萍 《分布式能源》 2024年第3期82-88,共7页
分布式光伏受天气影响较大,测算110kV供电区域的分布式光伏承载能力,对区域供电来说意义重大。基于此,提出基于分类与回归树(calssification and regression tree,CART)的110kV供电区域分布式光伏承载能力测算模型。该模型以分布式电源... 分布式光伏受天气影响较大,测算110kV供电区域的分布式光伏承载能力,对区域供电来说意义重大。基于此,提出基于分类与回归树(calssification and regression tree,CART)的110kV供电区域分布式光伏承载能力测算模型。该模型以分布式电源输出功率、区域分布式电源发电量占比、局部分布式电源线损增量等数据为基础,利用CART决策树建立110kV供电区域分布式光伏承载能力测算模型,并使用改进鲸鱼优化算法求解测算结果。经实验测试发现,该模型对分布式光伏承载能力的测算精准度较高,可有效测算不同实验区域在不同季节时的分布式光伏承载能力,具有较高的应用价值。 展开更多
关键词 分类与回归树(cart) 110kV供电区域 分布式光伏 承载能力
在线阅读 下载PDF
基于CART集成学习的城市不透水层百分比遥感估算 被引量:21
7
作者 廖明生 江利明 +1 位作者 林珲 杨立民 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2007年第12期1099-1102,1106,共5页
利用Landsat ETM+遥感数据,提出了一种基于CART集成学习的ISP遥感亚像元估算方法,将Boosting重采样技术引入CART分析中,用于提高ISP估算的精度。实验结果表明,该方法的ISP估算性能优于传统的单一CART学习算法,从ETM+影像中估算的ISP值... 利用Landsat ETM+遥感数据,提出了一种基于CART集成学习的ISP遥感亚像元估算方法,将Boosting重采样技术引入CART分析中,用于提高ISP估算的精度。实验结果表明,该方法的ISP估算性能优于传统的单一CART学习算法,从ETM+影像中估算的ISP值与真实值之间的相关系数达到0.91,平均偏差为11.16%。 展开更多
关键词 城市不透水层 遥感影像 分类与回归树 Boosting技术 集成学习
在线阅读 下载PDF
基于影像多种特征的CART决策树分类方法及其应用 被引量:62
8
作者 陈云 戴锦芳 李俊杰 《地理与地理信息科学》 CSCD 北大核心 2008年第2期33-36,共4页
以扬州市宝应县为研究区,采用主成分分析法对研究区影像进行数据压缩和单波段数据增强,利用灰度共生矩阵分析第一主成分的纹理信息。运用基于CART算法的决策树分类方法,选用影像的光谱特征值、NDVI值以及纹理统计量值为测试变量,并通过... 以扬州市宝应县为研究区,采用主成分分析法对研究区影像进行数据压缩和单波段数据增强,利用灰度共生矩阵分析第一主成分的纹理信息。运用基于CART算法的决策树分类方法,选用影像的光谱特征值、NDVI值以及纹理统计量值为测试变量,并通过计算确定决策树的节点规则,提取影像中主要地物信息。将分类结果与单纯依靠光谱特征的监督分类法结果相比较,表明基于影像多种特征的CART决策树分类方法分类精度较高,尤其较好地提取了围网养殖区和建设用地。 展开更多
关键词 纹理特征 光谱特征 cart 决策树
在线阅读 下载PDF
一种基于ExtraTrees的差分隐私保护算法 被引量:6
9
作者 李杨 陈子彬 谢光强 《计算机工程》 CAS CSCD 北大核心 2020年第2期134-140,共7页
为在同等隐私保护级别下提高模型的预测准确率并降低误差,提出一种基于ExtraTrees的差分隐私保护算法DiffPETs。在决策树生成过程中,根据不同的准则计算出各特征的结果值,利用指数机制选择得分最高的特征,通过拉普拉斯机制在叶子节点上... 为在同等隐私保护级别下提高模型的预测准确率并降低误差,提出一种基于ExtraTrees的差分隐私保护算法DiffPETs。在决策树生成过程中,根据不同的准则计算出各特征的结果值,利用指数机制选择得分最高的特征,通过拉普拉斯机制在叶子节点上进行加噪,使算法能够提供ε-差分隐私保护。将DiffPETs算法应用于决策树分类和回归分析中,对于分类树,选择基尼指数作为指数机制的可用性函数并给出基尼指数的敏感度,在回归树上,将方差作为指数机制的可用性函数并给出方差的敏感度。实验结果表明,与决策树差分隐私分类和回归算法相比,DiffPETs算法能有效降低预测误差。 展开更多
关键词 差分隐私 Extratrees算法 分类 回归分析 决策树
在线阅读 下载PDF
基于CART模型的贵州省贫困空间格局及其影响因素 被引量:6
10
作者 徐建斌 宋洁 +1 位作者 曹小曙 孙峰华 《经济地理》 CSSCI CSCD 北大核心 2020年第6期166-173,共8页
以贫困形势严峻和地理环境空间异质性显著的贵州省为案例,将分类与回归树(Classification and Regression Tree,CART)模型引入贫困研究,分析了贫困空间格局影响因素并制定了相关对策。结论表明:①贵州省的贫困格局呈现出典型的敞口“马... 以贫困形势严峻和地理环境空间异质性显著的贵州省为案例,将分类与回归树(Classification and Regression Tree,CART)模型引入贫困研究,分析了贫困空间格局影响因素并制定了相关对策。结论表明:①贵州省的贫困格局呈现出典型的敞口“马蹄”形结构,黔东、南和西部地区高而中部及北部较低。②基于CART模型的贵州省贫困影响因素重要性的排序为平均隔离度>路网密度>水域比例>平均偏远度>NDVI>年均降水。③根据CART模型决策规则,对贵州省扶贫攻坚提出以下对策建议:首先,应采取更加“精准”的易地扶贫和村镇体系规划降低居民点隔离度,确保居民点之间平均隔离度小于4847 m。其次,在居民点距离确定的基础上,应科学改善区域的生产生活用水条件,将水域面积比例尽可能提升至0.8%以上,保障生活用水和生产灌溉,提升水资源承载能力。最后,在确保居民点隔离度改善,水资源丰度提升的前提下,应重视喀斯特石漠化地区的生态保护修复,将县域的NDVI提升至0.45以上,提高区域生态资产,提升贫困社区韧性,将生态保护与脱贫攻坚相结合,促进区域人地关系和谐发展。 展开更多
关键词 贫困 易地扶贫 cart模型 喀斯特地貌 水资源承载力 隔离度 生态保护
原文传递
融合多尺度分割与CART算法的矸石山提取 被引量:4
11
作者 赵慧 汪云甲 《计算机工程与应用》 CSCD 2012年第22期222-225,248,共5页
结合多尺度分割和CART算法的特性,提出一种新的目标信息提取方法。其基本思想是将小尺度分割与大尺度分割相结合,将影像分割成一系列同质性对象;以同质性对象为基本单元选择训练样本,后利用CART算法提取目标信息。实验结果表明:与单纯... 结合多尺度分割和CART算法的特性,提出一种新的目标信息提取方法。其基本思想是将小尺度分割与大尺度分割相结合,将影像分割成一系列同质性对象;以同质性对象为基本单元选择训练样本,后利用CART算法提取目标信息。实验结果表明:与单纯像素级的CART算法相比,该方法可有效减少提取结果的噪声,一定程度上排除了其他地类对目标信息的干扰,提取精度显著提高。 展开更多
关键词 多尺度分割 分类和回归树(cart) 矸石山 目标提取
在线阅读 下载PDF
基于ETM影像多种特征的CART决策树分类——以延边州为例
12
作者 董叶辉 南颖 +1 位作者 刘志锋 吉吉吉 《资源开发与市场》 CAS CSSCI 2011年第2期116-117,130,F0004,F0002,共5页
分类回归树(CART)是一种非参数化的分类与回归方法,在用于遥感影像自动分类时,可方便地应用多源知识,提高分类精度。以延边州试验区土地利用/覆被分类为例,利用分类回归树分析从训练样本中集中发现分类规则,集成遥感影像的光谱特征、纹... 分类回归树(CART)是一种非参数化的分类与回归方法,在用于遥感影像自动分类时,可方便地应用多源知识,提高分类精度。以延边州试验区土地利用/覆被分类为例,利用分类回归树分析从训练样本中集中发现分类规则,集成遥感影像的光谱特征、纹理特征和辅助地学特征进行分类试验,并与传统的最大似然分类方法进行比较。结果表明,基于CART的决策树分类结果的总精度和Kappa系数分别为90.37%和0.8863,分类精度比MLC监督分类方法有明显提高。 展开更多
关键词 纹理特征 光谱特征 cart 决策树 遥感
在线阅读 下载PDF
基于XGBoost和QRLSTM的新能源出力高精度预测方法
13
作者 汪涛 申少辉 +1 位作者 袁晓鹏 关英宇 《信息技术》 2025年第1期186-190,196,共6页
在开展新能源出力预测阶段,由于新能源自身具有波动性和间歇性,导致预测结果的可靠性难以得到保障。为此,提出基于XGBoost和QRLSTM的新能源出力高精度预测方法。采用极限梯度提升算法(EXtreme Gradient Boosting,XGBoost)建立新能源出... 在开展新能源出力预测阶段,由于新能源自身具有波动性和间歇性,导致预测结果的可靠性难以得到保障。为此,提出基于XGBoost和QRLSTM的新能源出力高精度预测方法。采用极限梯度提升算法(EXtreme Gradient Boosting,XGBoost)建立新能源出力数据的目标函数,利用二阶泰勒展开式对目标函数进行近似处理。结合分位数回归构(Quantile Regression,QR)改进长短期记忆(Long Short Term Memory,LSTM)递归神经网络,构建QRLSTM模型将近似处理后的数据输入至该模型中,通过逻辑门完成新能源出力预测。在测试结果中,实际方法在不同环境条件下对于新能源机组出力情况的预测结果均与实际情况保持较高的拟合度,具有较高的精准度。 展开更多
关键词 cart回归树 XGBoost算法 二阶泰勒 分位数回归构 QRLSTM模型
在线阅读 下载PDF
基于Landsat时间序列数据的祁连山区域土地利用变化 被引量:11
14
作者 张赫林 彭代亮 +2 位作者 邓睿 王大成 韩永欢 《北京工业大学学报》 CAS CSCD 北大核心 2017年第5期665-676,共12页
为了研究祁连山地区土地利用变化情况,基于祁连山区域1986—2015年的Landsat时间序列数据,通过相对辐射校正获取时序地表反射率数据.采用光谱扩展与基于回归树的决策树分类(CART)获取规则的决策树分类方法,应用于长时间序列卫星影像,对... 为了研究祁连山地区土地利用变化情况,基于祁连山区域1986—2015年的Landsat时间序列数据,通过相对辐射校正获取时序地表反射率数据.采用光谱扩展与基于回归树的决策树分类(CART)获取规则的决策树分类方法,应用于长时间序列卫星影像,对各类土地利用类型近30 a的变化情况进行分析.结果表明:相对辐射归一化能有效减少时间序列数据之间光谱值差异,基于CART获取规则的决策树分类方法具有较高的分类精度.以2012年分类结果为例,总体分类精度为88.72%,Kappa系数为0.86,并分析了可能存在的误差.研究区耕地、林地和草地面积总体呈下降趋势发展,并且草地破碎化程度加剧,戈壁面积增多,植被退化导致土地荒漠化问题更加严重.最后,根据研究区土地利用变化情况进行讨论,并针对该情况提出建议. 展开更多
关键词 Landsat时序数据影像 长时间序列 相对辐射归一化 cart决策树分类 土地利用/覆被变化
在线阅读 下载PDF
一种同态密码体制下加密云数据的隐私保护CART算法 被引量:5
15
作者 苏杰波 张小萍 +2 位作者 李道丰 赵搏文 周凯 《小型微型计算机系统》 CSCD 北大核心 2016年第11期2537-2541,共5页
CART(Classification And Regression Tree,分类回归树)是一种准确率和效率都较高的数据挖掘算法,它支持离散型和连续型的数据分类,但无法适用于对加密的隐私云数据进行分类.因此提出PPCART(Privacy-preserving CART,隐私保护的分类回归... CART(Classification And Regression Tree,分类回归树)是一种准确率和效率都较高的数据挖掘算法,它支持离散型和连续型的数据分类,但无法适用于对加密的隐私云数据进行分类.因此提出PPCART(Privacy-preserving CART,隐私保护的分类回归树),该算法利用同态加密特性对CART算法做了相应的改善,使之在保持CART原有准确率和相对较好执行效率的情况下能分类加密云数据,避免了在半诚实模型下的分类过程中真实数据的泄露.经过安全分析和实验测试表明,PPCART可显著提高传统CART算法的安全性,且具有接近于它的执行时间. 展开更多
关键词 同态加密 安全多方计算 分类回归树 隐私保护的分类回归树
在线阅读 下载PDF
CART分析及其在故障趋势预测中的应用 被引量:12
16
作者 刘玉茹 赵成萍 +2 位作者 臧军 宁芊 周新志 《计算机应用》 CSCD 北大核心 2017年第A02期57-59,73,共4页
针对机械设备故障监测中的非线性时间序列数据,构建分类回归树(CART),使用最小误差剪枝算法对初次生成的决策树进行剪枝。将CART模型用于滚动轴承设备故障趋势的预测,首先提取滚动轴承的时域和频域特征,然后基于经过主成分析(PCA)降维... 针对机械设备故障监测中的非线性时间序列数据,构建分类回归树(CART),使用最小误差剪枝算法对初次生成的决策树进行剪枝。将CART模型用于滚动轴承设备故障趋势的预测,首先提取滚动轴承的时域和频域特征,然后基于经过主成分析(PCA)降维后的数据进行CART的建模。最后将CART模型预测的结果与BP神经网络模型以及自回归滑动平均模型(ARMA)进行对比,实验结果表明:CART模型预测的平均绝对误差(MAE)和均方根误差(RMSE)值均低于ARMA和BP神经网络模型。其中CART模型预测的RMSE值比ARMA预测模型以及BP神经网络训练5 000次、10 000次的预测模型分别降低了57.26%、69.45%、57.37%。 展开更多
关键词 非线性时间序列 分类回归树 故障趋势预测 最小误差剪枝 BP神经网络 自回归滑动平均
在线阅读 下载PDF
基于数据分析的海上平台电力负荷精准预测方法
17
作者 李自越 《计算机应用文摘》 2025年第20期253-255,共3页
为解决海上平台电力负荷预测中存在的数据复杂性、异构性及负荷波动性问题,文章提出一种基于分类回归树(CART)算法的电力负荷预测方法,以提升预测的准确性与实时性.首先分析海上平台电力负荷的特点、影响因素及预测难点;其次构建基于CAR... 为解决海上平台电力负荷预测中存在的数据复杂性、异构性及负荷波动性问题,文章提出一种基于分类回归树(CART)算法的电力负荷预测方法,以提升预测的准确性与实时性.首先分析海上平台电力负荷的特点、影响因素及预测难点;其次构建基于CART的负荷预测数据分析模型,并设计完整的预测流程;最后通过实验对模型进行验证.结果表明,该方法能够有效捕捉负荷变化规律,预测误差较小,平均相对误差为5.86%,具备较高的可行性与实用价值. 展开更多
关键词 数据分析 海上平台 电力负荷 精准预测 分类回归树算法
在线阅读 下载PDF
基于CART-熵权法的管道腐蚀状态评估及其应用 被引量:8
18
作者 闻亚星 吕坦 +3 位作者 国滨 王锋 陈金忠 马义来 《腐蚀与防护》 CAS CSCD 北大核心 2023年第9期16-21,100,共7页
管道腐蚀状态评估是管道完整性管理的重要部分,为了评估管道腐蚀状态,根据长输管道腐蚀特点,采用两轮内检测数据计算管道的局部腐蚀速率。以局部腐蚀速率为依据,采用分类与回归树(CART)将管道划分为若干单元,利用熵权法建立腐蚀状态评... 管道腐蚀状态评估是管道完整性管理的重要部分,为了评估管道腐蚀状态,根据长输管道腐蚀特点,采用两轮内检测数据计算管道的局部腐蚀速率。以局部腐蚀速率为依据,采用分类与回归树(CART)将管道划分为若干单元,利用熵权法建立腐蚀状态评估模型,并结合工程实例分析了管道腐蚀状态的相对等级。结果表明:平均预估维修比(ERF)对该管道腐蚀状态的影响最大,该模型确定了腐蚀最严重的管段为44、38、45、37单元,便于业主对这些管段进行重点监测和维修;基于CART-熵权法的腐蚀状态评估模型能够很好地用于管道腐蚀状态评估工作,为业主制定检维修策略提供科学合理的依据。 展开更多
关键词 分类与回归树(cart) 熵权法 管道单元划分 腐蚀状态评估
在线阅读 下载PDF
利用CART分类树分类检测交通拥堵点 被引量:8
19
作者 孙梦婷 魏海平 +1 位作者 李星滢 徐立 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2022年第5期683-692,共10页
交通拥堵检测是城市交通管理工作的重点和难点之一,现有的拥堵检测以路段为单位,不利于拥堵时空演变规律信息的提取,且检测内容大多只涉及拥堵程度,缺少对拥堵类型的识别。基于CART(classification and regression tree)分类树算法,提... 交通拥堵检测是城市交通管理工作的重点和难点之一,现有的拥堵检测以路段为单位,不利于拥堵时空演变规律信息的提取,且检测内容大多只涉及拥堵程度,缺少对拥堵类型的识别。基于CART(classification and regression tree)分类树算法,提出一种以路段点为检测单元的拥堵点分类检测方法,该方法可根据路段平均行驶速度实时检测拥堵点及其类型。首先,将路段等距离划分后映射为路段点,根据时空维路况异常规则和异常模式,以路段点为单元分析了4种拥堵类型的时空演变模式;其次,在路段路况检测的基础上,提取路段点路况时空序列,根据不同类型的拥堵模式对路况时空序列进行分类标记;然后,选取4种速度指标作为样本属性集合,按照属性集合提取各路段点在各时段的速度,以此作为决策树学习的数据集;最后,基于CART分类树算法,采用交叉验证的方式训练出最优模型,使其达到最佳的泛化能力。与支持向量机(support vector machine,SVM)分类模型进行比较,实验结果表明,该方法在分类检测交通拥堵点时具有较高的正确率和召回率,且分类检测时效性较好。 展开更多
关键词 交通拥堵点 拥堵时空演变模式 拥堵点分类检测 路况时空序列 cart
原文传递
脓毒症相关肝损伤预后分析及基于机器学习方法的预测模型建立
20
作者 赵云 蒋伟 +1 位作者 郑瑞强 於江泉 《实用临床医药杂志》 2025年第7期32-37,42,共7页
目的分析脓毒症相关肝损伤(SRLI)患者的预后,并使用8种机器学习方法建立脓毒症患者入住ICU后发生SRLI的预测模型。方法纳入MIMIC-IV数据库中满足脓毒症诊断标准且无肝脏、胆系基础疾病的患者。根据肝酶≥5倍正常值上限(ULN)或胆红素≥2.... 目的分析脓毒症相关肝损伤(SRLI)患者的预后,并使用8种机器学习方法建立脓毒症患者入住ICU后发生SRLI的预测模型。方法纳入MIMIC-IV数据库中满足脓毒症诊断标准且无肝脏、胆系基础疾病的患者。根据肝酶≥5倍正常值上限(ULN)或胆红素≥2.0 mg/dL将患者分为SRLI组和非SRLI组。采用卡方检验、多因素Logistics回归分析及倾向性评分匹配法分析2组患者死亡风险。采用8种机器学习算法[Logistics回归、分类回归树(CART)、随机森林(RF)、支持向量机(SVM)、K-近邻(K-NN)、朴素贝叶斯(NBM)、极端梯度提升(XGBoost)、梯度提升树(GBDT)]构建SRLI预测模型并进行验证。结果卡方检验(P<0.001)、多因素Logistics回归分析(P<0.05)、倾向性评分匹配分析后Log-rank(P<0.05)均显示SRLI增加患者死亡风险。SRLI预测模型中,RF算法的曲线下面积(AUC)最高为0.866,其后依次是GBDT(AUC=0.862)、Logistics回归(AUC=0.859)、SVM(AUC=0.837)、NBM(AUC=0.830)、CART(AUC=0.771)、XGBoost(AUC=0.764)、K-NN(AUC=0.722)。结论SRLI增加患者死亡风险。RF算法构建预测模型有较高的诊断价值。 展开更多
关键词 脓毒症 脓毒症相关肝损伤 机器学习算法 预测模型 分类回归树 随机森林 支持向量机 朴素贝叶斯
暂未订购
上一页 1 2 6 下一页 到第
使用帮助 返回顶部