准确测量管道介质声速有助于分析介质的密度和组分,而传统的声速测量方法重复性低、鲁棒性差。为了实现介质声速的准确测量,首先,基于管道一维声波理论推导出线阵列传感器在管道轴向位置的声信号模型,介绍了空气与水的理论声速计算公式...准确测量管道介质声速有助于分析介质的密度和组分,而传统的声速测量方法重复性低、鲁棒性差。为了实现介质声速的准确测量,首先,基于管道一维声波理论推导出线阵列传感器在管道轴向位置的声信号模型,介绍了空气与水的理论声速计算公式以及不同管材、管径和壁厚对声速衰减的影响;其次,采用MUSIC(multiple signal classification)波束形成算法将多通道时域数据转换至波数频率域,呈现出斜率与声速相关的“声学脊”;最后,使用DN50不锈钢管道分别在水和空气流量标准装置上进行声速测量实验,与理论数据相比,水中声速的相对误差为1.61%,重复性为0.45%,空气中声速的相对误差为0.59%,重复性为1.27%。结果表明MUSIC算法可准确测量管道一维声波的介质声速。展开更多
It can be said that the automatic classification of musical genres plays a very important role in the current digital technology world in which the creation,distribution,and enjoyment of musical works have undergone h...It can be said that the automatic classification of musical genres plays a very important role in the current digital technology world in which the creation,distribution,and enjoyment of musical works have undergone huge changes.As the number ofmusic products increases daily and themusic genres are extremely rich,storing,classifying,and searching these works manually becomes difficult,if not impossible.Automatic classification ofmusical genres will contribute to making this possible.The research presented in this paper proposes an appropriate deep learning model along with an effective data augmentation method to achieve high classification accuracy for music genre classification using Small Free Music Archive(FMA)data set.For Small FMA,it is more efficient to augment the data by generating an echo rather than pitch shifting.The research results show that the DenseNet121 model and data augmentation methods,such as noise addition and echo generation,have a classification accuracy of 98.97%for the Small FMA data set,while this data set lowered the sampling frequency to 16000 Hz.The classification accuracy of this study outperforms that of the majority of the previous results on the same Small FMA data set.展开更多
叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal clas...叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。展开更多
BACKGROUND Musical hallucinations(MH)involve the false perception of music in the absence of external stimuli which links with different etiologies.The pathomechanisms of MH encompass various conditions.The etiologica...BACKGROUND Musical hallucinations(MH)involve the false perception of music in the absence of external stimuli which links with different etiologies.The pathomechanisms of MH encompass various conditions.The etiological classification of MH is of particular importance and offers valuable insights to understand MH,and further to develop the effective treatment of MH.Over the recent decades,more MH cases have been reported,revealing newly identified medical and psychiatric causes of MH.Functional imaging studies reveal that MH activates a wide array of brain regions.An up-to-date analysis on MH,especially on MH comorbid psychiatric conditions is warranted.AIM To propose a new classification of MH;to study the age and gender differences of MH in mental disorders;and neuropathology of MH.METHODS Literatures searches were conducted using keywords such as“music hallucination,”“music hallucination and mental illness,”“music hallucination and gender difference,”and“music hallucination and psychiatric disease”in the databases of PubMed,Google Scholar,and Web of Science.MH cases were collected and categorized based on their etiologies.The t-test and ANOVA were employed(P<0.05)to compare the age differences of MH different etiological groups.Function neuroimaging studies of neural networks regulating MH and their possible molecular mechanisms were discussed.RESULTS Among the 357 yielded publications,294 MH cases were collected.The average age of MH cases was 67.9 years,with a predominance of females(66.8%females vs 33.2%males).MH was classified into eight groups based on their etiological mechanisms.Statistical analysis of MH cases indicates varying associations with psychiatric diagnoses.CONCLUSION We carried out a more comprehensive review of MH studies.For the first time according to our knowledge,we demonstrated the psychiatric conditions linked and/or associated with MH from statistical,biological and molecular point of view.展开更多
Genres are one of the key features that categorize music based on specific series of patterns.However,the Arabic music content on the web is poorly defined into its genres,making the automatic classification of Arabic...Genres are one of the key features that categorize music based on specific series of patterns.However,the Arabic music content on the web is poorly defined into its genres,making the automatic classification of Arabic audio genres challenging.For this reason,in this research,our objective is first to construct a well-annotated dataset of five of the most well-known Arabic music genres,which are:Eastern Takht,Rai,Muwashshah,the poem,and Mawwal,and finally present a comprehensive empirical comparison of deep Convolutional Neural Networks(CNNs)architectures on Arabic music genres classification.In this work,to utilize CNNs to develop a practical classification system,the audio data is transformed into a visual representation(spectrogram)using Short Time Fast Fourier Transformation(STFT),then several audio features are extracted using Mel Frequency Cepstral Coefficients(MFCC).Performance evaluation of classifiers is measured with the accuracy score,time to build,and Matthew’s correlation coefficient(MCC).The concluded results demonstrated that AlexNet is considered among the topperforming five CNNs classifiers studied:LeNet5,AlexNet,VGG,ResNet-50,and LSTM-CNN,with an overall accuracy of 96%.展开更多
In the discipline of Music Information Retrieval(MIR),categorizing musicfiles according to their genre is a difficult process.Music genre classifica-tion is an important multimedia research domain for classification of mu...In the discipline of Music Information Retrieval(MIR),categorizing musicfiles according to their genre is a difficult process.Music genre classifica-tion is an important multimedia research domain for classification of music data-bases.In the proposed method music genre classification using features obtained from audio data is proposed.The classification is done using features extracted from the audio data of popular online repository namely GTZAN,ISMIR 2004 and Latin Music Dataset(LMD).The features highlight the differences between different musical styles.In the proposed method,feature selection is per-formed using an African Buffalo Optimization(ABO),and the resulting features are employed to classify the audio using Back Propagation Neural Networks(BPNN),Support Vector Machine(SVM),Naïve Bayes,decision tree and kNN classifiers.Performance evaluation reveals that,ABO based feature selection strategy achieves an average accuracy of 82%with mean square error(MSE)of 0.003 when used with neural network classifier.展开更多
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services...Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.展开更多
实际变压器局部放电定位过程中放电源数目是未知的,常利用传统高分辨波达方向(direction of arrival,DOA)估计算法解决放电定位问题,但在信源数欠估计、过估计情况下存在定位精度低、误差大的问题。为此,本文提出了一种基于改进盖氏圆(g...实际变压器局部放电定位过程中放电源数目是未知的,常利用传统高分辨波达方向(direction of arrival,DOA)估计算法解决放电定位问题,但在信源数欠估计、过估计情况下存在定位精度低、误差大的问题。为此,本文提出了一种基于改进盖氏圆(geschgorin disk estimator,GDE)准则联合多重信号分类(multiple signal classification,MUSIC)算法的变压器局部放电多目标定位方法。首先,利用改进盖氏圆准则确定真实放电源数目;然后,在信源数确定的情况下利用MUSIC算法对多个局部放电源的波达方向进行估计。仿真结果表明,本方法定位精度高,且在白噪声和空间色噪声的情况下仍能对放电源的俯仰角和方位角进行准确估计,能够满足实际工程需求。展开更多
With the development of new media technology and the popularity of the TikTok platform in China,a large number of popular vocal music teachers have flocked to online platforms for teaching.Online vocal music education...With the development of new media technology and the popularity of the TikTok platform in China,a large number of popular vocal music teachers have flocked to online platforms for teaching.Online vocal music education in China is undergoing a transformation and facing challenges.This study adopts an exploratory research approach,interviewing students learning pop vocal music,and observing popular pop teachers on TikTok.The advantages,disadvantages,techniques,and methods of domestic TikTok pop vocal music teaching were investigated and studied,and a series of experiences and suggestions for optimizing TikTok teaching were put forward.The results of this study are helpful for understanding the advantages and disadvantages of TikTok pop vocal music teaching and grasping the correct development direction.These guidance and suggestions can stimulate teachers’creativity and improve their vocal music teaching level.展开更多
Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interd...Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interdisciplinarity indicators are widely used to evaluate research performance,the impact of classification granularity on these assessments remains underexplored.Design/methodology/approach:This study investigates how different levels of classification granularity-macro,meso,and micro-affect the evaluation of interdisciplinarity in research institutes.Using a dataset of 262 institutes from four major German non-university organizations(FHG,HGF,MPG,WGL)from 2018 to 2022,we examine inconsistencies in interdisciplinarity across levels,analyze ranking changes,and explore the influence of institutional fields and research focus(applied vs.basic).Findings:Our findings reveal significant inconsistencies in interdisciplinarity across classification levels,with rankings varying substantially.Notably,the Fraunhofer Society(FHG),which performs well at the macro level,experiences significant ranking declines at meso and micro levels.Normalizing interdisciplinarity by research field confirmed that these declines persist.The research focus of institutes,whether applied,basic,or mixed,does not significantly explain the observed ranking dynamics.Research limitations:This study has only considered the publication-based dimension of institutional interdisciplinarity and has not explored other aspects.Practical implications:The findings provide insights for policymakers,research managers,and scholars to better interpret interdisciplinarity metrics and support interdisciplinary research effectively.Originality/value:This study underscores the critical role of classification granularity in interdisciplinarity assessment and emphasizes the need for standardized approaches to ensure robust and fair evaluations.展开更多
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome...Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time.展开更多
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textile...The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing.展开更多
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar...Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction.展开更多
Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advanc...Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advancements in machine learning,achieving both high accuracy and low computational cost for arrhythmia classification remains a critical issue.Computer-aided diagnosis systems can play a key role in early detection,reducing mortality rates associated with cardiac disorders.This study proposes a fully automated approach for ECG arrhythmia classification using deep learning and machine learning techniques to improve diagnostic accuracy while minimizing processing time.The methodology consists of three stages:1)preprocessing,where ECG signals undergo noise reduction and feature extraction;2)feature Identification,where deep convolutional neural network(CNN)blocks,combined with data augmentation and transfer learning,extract key parameters;3)classification,where a hybrid CNN-SVM model is employed for arrhythmia recognition.CNN-extracted features were fed into a binary support vector machine(SVM)classifier,and model performance was assessed using five-fold cross-validation.Experimental findings demonstrated that the CNN2 model achieved 85.52%accuracy,while the hybrid CNN2-SVM approach significantly improved accuracy to 97.33%,outperforming conventional methods.This model enhances classification efficiency while reducing computational complexity.The proposed approach bridges the gap between accuracy and processing speed in ECG arrhythmia classification,offering a promising solution for real-time clinical applications.Its superior performance compared to nonlinear classifiers highlights its potential for improving automated cardiac diagnosis.展开更多
In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in spec...In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in specific genes,type ofβ-cell impairment,degree of insulin resistance,and clinical characteristics of metabolic profiles.Improved classification methods enable healthcare providers to formulate blood glucose management strategies more precisely.Applying these updated classification systems,will assist clinicians in further optimising treatment plans,including targeted drug therapies,personalized dietary advice,and specific exercise plans.Ultimately,this will facilitate stricter blood glucose control,minimize the risks of hypoglycaemia and hyperglycaemia,and reduce long-term complications associated with diabetes.展开更多
Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical sign...Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical signatures matching local lithologies (e.g., mare basalts or their single minerals) or regolith bulk soil compositions are classified as “local”. Otherwise, they could be defined as “exotic”. The analysis of exotic glasses provides the opportunity to explore previously unsampled lunar areas. This study focuses on the identification of exotic glasses within the Chang’e-5 (CE-5) soil sample by analyzing the trace elements of 28 impact glasses with distinct major element compositions in comparison with the CE-5 bulk soil. However, the results indicate that 18 of the analyzed glasses exhibit trace element compositions comparable to those of the local CE-5 materials. In particular, some of them could match the local single mineral component in major and trace elements, suggesting a local origin. Therefore, it is recommended that the investigation be expanded from using major elements to including nonvolatile trace elements, with a view to enhancing our understanding on the provenance of lunar impact glasses. To achieve a more accurate identification of exotic glasses within the CE-5 soil sample, a novel classification plot of Mg# versus La is proposed. The remaining 10 glasses, which exhibit diverse trace element variations, were identified as exotic. A comparative analysis of their chemical characteristics with remote sensing data indicates that they may have originated from the Aristarchus, Mairan, Sharp, or Pythagoras craters. This study elucidates the classification and possible provenance of exotic materials within the CE-5 soil sample, thereby providing constraints for the enhanced identification of local and exotic components at the CE-5 landing site.展开更多
The network community is a platform for people to communicate. In order to accurately analyze the emotions displayed in music community, this paper proposes a convolutional neural network classification model based on...The network community is a platform for people to communicate. In order to accurately analyze the emotions displayed in music community, this paper proposes a convolutional neural network classification model based on multi-dimensional emotions. Firstly, to solve the problem of feature extraction of emotion words under similar sentence patterns, it proposed a multi-emotion classification method and emotion vector splicing method that conform to music community emotion characteristics. Secondly, aiming at the coexistence of multiple categories of emotions in music comment text, it applied an emotional value measurement method based on music characteristics. Finally, the classification model was constructed with combining methods of emotion vector splicing and emotion value measurement. Through experimental analysis, this model is proved to have good performance in accuracy.展开更多
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue...In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%.展开更多
文摘准确测量管道介质声速有助于分析介质的密度和组分,而传统的声速测量方法重复性低、鲁棒性差。为了实现介质声速的准确测量,首先,基于管道一维声波理论推导出线阵列传感器在管道轴向位置的声信号模型,介绍了空气与水的理论声速计算公式以及不同管材、管径和壁厚对声速衰减的影响;其次,采用MUSIC(multiple signal classification)波束形成算法将多通道时域数据转换至波数频率域,呈现出斜率与声速相关的“声学脊”;最后,使用DN50不锈钢管道分别在水和空气流量标准装置上进行声速测量实验,与理论数据相比,水中声速的相对误差为1.61%,重复性为0.45%,空气中声速的相对误差为0.59%,重复性为1.27%。结果表明MUSIC算法可准确测量管道一维声波的介质声速。
基金The authors received the research fun T2022-CN-006 for this study.
文摘It can be said that the automatic classification of musical genres plays a very important role in the current digital technology world in which the creation,distribution,and enjoyment of musical works have undergone huge changes.As the number ofmusic products increases daily and themusic genres are extremely rich,storing,classifying,and searching these works manually becomes difficult,if not impossible.Automatic classification ofmusical genres will contribute to making this possible.The research presented in this paper proposes an appropriate deep learning model along with an effective data augmentation method to achieve high classification accuracy for music genre classification using Small Free Music Archive(FMA)data set.For Small FMA,it is more efficient to augment the data by generating an echo rather than pitch shifting.The research results show that the DenseNet121 model and data augmentation methods,such as noise addition and echo generation,have a classification accuracy of 98.97%for the Small FMA data set,while this data set lowered the sampling frequency to 16000 Hz.The classification accuracy of this study outperforms that of the majority of the previous results on the same Small FMA data set.
文摘叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。
文摘BACKGROUND Musical hallucinations(MH)involve the false perception of music in the absence of external stimuli which links with different etiologies.The pathomechanisms of MH encompass various conditions.The etiological classification of MH is of particular importance and offers valuable insights to understand MH,and further to develop the effective treatment of MH.Over the recent decades,more MH cases have been reported,revealing newly identified medical and psychiatric causes of MH.Functional imaging studies reveal that MH activates a wide array of brain regions.An up-to-date analysis on MH,especially on MH comorbid psychiatric conditions is warranted.AIM To propose a new classification of MH;to study the age and gender differences of MH in mental disorders;and neuropathology of MH.METHODS Literatures searches were conducted using keywords such as“music hallucination,”“music hallucination and mental illness,”“music hallucination and gender difference,”and“music hallucination and psychiatric disease”in the databases of PubMed,Google Scholar,and Web of Science.MH cases were collected and categorized based on their etiologies.The t-test and ANOVA were employed(P<0.05)to compare the age differences of MH different etiological groups.Function neuroimaging studies of neural networks regulating MH and their possible molecular mechanisms were discussed.RESULTS Among the 357 yielded publications,294 MH cases were collected.The average age of MH cases was 67.9 years,with a predominance of females(66.8%females vs 33.2%males).MH was classified into eight groups based on their etiological mechanisms.Statistical analysis of MH cases indicates varying associations with psychiatric diagnoses.CONCLUSION We carried out a more comprehensive review of MH studies.For the first time according to our knowledge,we demonstrated the psychiatric conditions linked and/or associated with MH from statistical,biological and molecular point of view.
文摘Genres are one of the key features that categorize music based on specific series of patterns.However,the Arabic music content on the web is poorly defined into its genres,making the automatic classification of Arabic audio genres challenging.For this reason,in this research,our objective is first to construct a well-annotated dataset of five of the most well-known Arabic music genres,which are:Eastern Takht,Rai,Muwashshah,the poem,and Mawwal,and finally present a comprehensive empirical comparison of deep Convolutional Neural Networks(CNNs)architectures on Arabic music genres classification.In this work,to utilize CNNs to develop a practical classification system,the audio data is transformed into a visual representation(spectrogram)using Short Time Fast Fourier Transformation(STFT),then several audio features are extracted using Mel Frequency Cepstral Coefficients(MFCC).Performance evaluation of classifiers is measured with the accuracy score,time to build,and Matthew’s correlation coefficient(MCC).The concluded results demonstrated that AlexNet is considered among the topperforming five CNNs classifiers studied:LeNet5,AlexNet,VGG,ResNet-50,and LSTM-CNN,with an overall accuracy of 96%.
文摘In the discipline of Music Information Retrieval(MIR),categorizing musicfiles according to their genre is a difficult process.Music genre classifica-tion is an important multimedia research domain for classification of music data-bases.In the proposed method music genre classification using features obtained from audio data is proposed.The classification is done using features extracted from the audio data of popular online repository namely GTZAN,ISMIR 2004 and Latin Music Dataset(LMD).The features highlight the differences between different musical styles.In the proposed method,feature selection is per-formed using an African Buffalo Optimization(ABO),and the resulting features are employed to classify the audio using Back Propagation Neural Networks(BPNN),Support Vector Machine(SVM),Naïve Bayes,decision tree and kNN classifiers.Performance evaluation reveals that,ABO based feature selection strategy achieves an average accuracy of 82%with mean square error(MSE)of 0.003 when used with neural network classifier.
文摘Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.
文摘实际变压器局部放电定位过程中放电源数目是未知的,常利用传统高分辨波达方向(direction of arrival,DOA)估计算法解决放电定位问题,但在信源数欠估计、过估计情况下存在定位精度低、误差大的问题。为此,本文提出了一种基于改进盖氏圆(geschgorin disk estimator,GDE)准则联合多重信号分类(multiple signal classification,MUSIC)算法的变压器局部放电多目标定位方法。首先,利用改进盖氏圆准则确定真实放电源数目;然后,在信源数确定的情况下利用MUSIC算法对多个局部放电源的波达方向进行估计。仿真结果表明,本方法定位精度高,且在白噪声和空间色噪声的情况下仍能对放电源的俯仰角和方位角进行准确估计,能够满足实际工程需求。
文摘With the development of new media technology and the popularity of the TikTok platform in China,a large number of popular vocal music teachers have flocked to online platforms for teaching.Online vocal music education in China is undergoing a transformation and facing challenges.This study adopts an exploratory research approach,interviewing students learning pop vocal music,and observing popular pop teachers on TikTok.The advantages,disadvantages,techniques,and methods of domestic TikTok pop vocal music teaching were investigated and studied,and a series of experiences and suggestions for optimizing TikTok teaching were put forward.The results of this study are helpful for understanding the advantages and disadvantages of TikTok pop vocal music teaching and grasping the correct development direction.These guidance and suggestions can stimulate teachers’creativity and improve their vocal music teaching level.
文摘Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interdisciplinarity indicators are widely used to evaluate research performance,the impact of classification granularity on these assessments remains underexplored.Design/methodology/approach:This study investigates how different levels of classification granularity-macro,meso,and micro-affect the evaluation of interdisciplinarity in research institutes.Using a dataset of 262 institutes from four major German non-university organizations(FHG,HGF,MPG,WGL)from 2018 to 2022,we examine inconsistencies in interdisciplinarity across levels,analyze ranking changes,and explore the influence of institutional fields and research focus(applied vs.basic).Findings:Our findings reveal significant inconsistencies in interdisciplinarity across classification levels,with rankings varying substantially.Notably,the Fraunhofer Society(FHG),which performs well at the macro level,experiences significant ranking declines at meso and micro levels.Normalizing interdisciplinarity by research field confirmed that these declines persist.The research focus of institutes,whether applied,basic,or mixed,does not significantly explain the observed ranking dynamics.Research limitations:This study has only considered the publication-based dimension of institutional interdisciplinarity and has not explored other aspects.Practical implications:The findings provide insights for policymakers,research managers,and scholars to better interpret interdisciplinarity metrics and support interdisciplinary research effectively.Originality/value:This study underscores the critical role of classification granularity in interdisciplinarity assessment and emphasizes the need for standardized approaches to ensure robust and fair evaluations.
基金supported by King Saud University,Riyadh,Saudi Arabia,through the Researchers Supporting Project under Grant RSPD2025R697.
文摘Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time.
基金supported in part by the Six Talent Peaks Project in Jiangsu Province under Grant 013040315in part by the China Textile Industry Federation Science and Technology Guidance Project under Grant 2017107+1 种基金in part by the National Natural Science Foundation of China under Grant 31570714in part by the China Scholarship Council under Grant 202108320290。
文摘The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing.
基金the Research Grant of Kwangwoon University in 2024.
文摘Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction.
文摘Diagnosing cardiac diseases relies heavily on electrocardiogram(ECG)analysis,but detecting myocardial infarction-related arrhythmias remains challenging due to irregular heartbeats and signal variations.Despite advancements in machine learning,achieving both high accuracy and low computational cost for arrhythmia classification remains a critical issue.Computer-aided diagnosis systems can play a key role in early detection,reducing mortality rates associated with cardiac disorders.This study proposes a fully automated approach for ECG arrhythmia classification using deep learning and machine learning techniques to improve diagnostic accuracy while minimizing processing time.The methodology consists of three stages:1)preprocessing,where ECG signals undergo noise reduction and feature extraction;2)feature Identification,where deep convolutional neural network(CNN)blocks,combined with data augmentation and transfer learning,extract key parameters;3)classification,where a hybrid CNN-SVM model is employed for arrhythmia recognition.CNN-extracted features were fed into a binary support vector machine(SVM)classifier,and model performance was assessed using five-fold cross-validation.Experimental findings demonstrated that the CNN2 model achieved 85.52%accuracy,while the hybrid CNN2-SVM approach significantly improved accuracy to 97.33%,outperforming conventional methods.This model enhances classification efficiency while reducing computational complexity.The proposed approach bridges the gap between accuracy and processing speed in ECG arrhythmia classification,offering a promising solution for real-time clinical applications.Its superior performance compared to nonlinear classifiers highlights its potential for improving automated cardiac diagnosis.
文摘In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in specific genes,type ofβ-cell impairment,degree of insulin resistance,and clinical characteristics of metabolic profiles.Improved classification methods enable healthcare providers to formulate blood glucose management strategies more precisely.Applying these updated classification systems,will assist clinicians in further optimising treatment plans,including targeted drug therapies,personalized dietary advice,and specific exercise plans.Ultimately,this will facilitate stricter blood glucose control,minimize the risks of hypoglycaemia and hyperglycaemia,and reduce long-term complications associated with diabetes.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42241103 and 62227901)the Key Research Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant Nos. IGGCAS-202101 and IGGCAS-202401)
文摘Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical signatures matching local lithologies (e.g., mare basalts or their single minerals) or regolith bulk soil compositions are classified as “local”. Otherwise, they could be defined as “exotic”. The analysis of exotic glasses provides the opportunity to explore previously unsampled lunar areas. This study focuses on the identification of exotic glasses within the Chang’e-5 (CE-5) soil sample by analyzing the trace elements of 28 impact glasses with distinct major element compositions in comparison with the CE-5 bulk soil. However, the results indicate that 18 of the analyzed glasses exhibit trace element compositions comparable to those of the local CE-5 materials. In particular, some of them could match the local single mineral component in major and trace elements, suggesting a local origin. Therefore, it is recommended that the investigation be expanded from using major elements to including nonvolatile trace elements, with a view to enhancing our understanding on the provenance of lunar impact glasses. To achieve a more accurate identification of exotic glasses within the CE-5 soil sample, a novel classification plot of Mg# versus La is proposed. The remaining 10 glasses, which exhibit diverse trace element variations, were identified as exotic. A comparative analysis of their chemical characteristics with remote sensing data indicates that they may have originated from the Aristarchus, Mairan, Sharp, or Pythagoras craters. This study elucidates the classification and possible provenance of exotic materials within the CE-5 soil sample, thereby providing constraints for the enhanced identification of local and exotic components at the CE-5 landing site.
基金the National Natural Science Foundation of China under Grant No. 61672179, 61370083 and 61402126The Youth Foundation of Heilongjiang Province of China under Grant No. QC2016083+1 种基金the Fundamental Research Funds for the Central Universities under Grant No. HEUCF180606the Innovative Talents Research Special Funds of Harbin Science and Technology Bureau under Grant No. 2016RQQXJ128.
文摘The network community is a platform for people to communicate. In order to accurately analyze the emotions displayed in music community, this paper proposes a convolutional neural network classification model based on multi-dimensional emotions. Firstly, to solve the problem of feature extraction of emotion words under similar sentence patterns, it proposed a multi-emotion classification method and emotion vector splicing method that conform to music community emotion characteristics. Secondly, aiming at the coexistence of multiple categories of emotions in music comment text, it applied an emotional value measurement method based on music characteristics. Finally, the classification model was constructed with combining methods of emotion vector splicing and emotion value measurement. Through experimental analysis, this model is proved to have good performance in accuracy.
文摘In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%.