期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On the Performances of Classical VAR and Sims-Zha Bayesian VAR Models in the Presence of Collinearity and Autocorrelated Error Terms
1
作者 M. O. Adenomon V. A. Michael O. P. Evans 《Open Journal of Statistics》 2016年第1期96-132,共37页
In time series literature, many authors have found out that multicollinearity and autocorrelation usually afflict time series data. In this paper, we compare the performances of classical VAR and Sims-Zha Bayesian VAR... In time series literature, many authors have found out that multicollinearity and autocorrelation usually afflict time series data. In this paper, we compare the performances of classical VAR and Sims-Zha Bayesian VAR models with quadratic decay on bivariate time series data jointly influenced by collinearity and autocorrelation. We simulate bivariate time series data for different collinearity levels (﹣0.99, ﹣0.95, ﹣0.9, ﹣0.85, ﹣0.8, 0.8, 0.85, 0.9, 0.95, 0.99) and autocorrelation levels (﹣0.99, ﹣0.95, ﹣0.9, ﹣0.85, ﹣0.8, 0.8, 0.85, 0.9, 0.95, 0.99) for time series length of 8, 16, 32, 64, 128, 256 respectively. The results from 10,000 simulations reveal that the models performance varies with the collinearity and autocorrelation levels, and with the time series lengths. In addition, the results reveal that the BVAR4 model is a viable model for forecasting. Therefore, we recommend that the levels of collinearity and autocorrelation, and the time series length should be considered in using an appropriate model for forecasting. 展开更多
关键词 Vector Autoregression (var) classical var Bayesian var (Bvar) Sims-Zha Prior COLLINEARITY Autocorrelation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部