Recent advances in contrastive language-image pretraining(CLIP)models and generative AI have demonstrated significant capabilities in cross-modal understanding and content generation.Based on these developments,this s...Recent advances in contrastive language-image pretraining(CLIP)models and generative AI have demonstrated significant capabilities in cross-modal understanding and content generation.Based on these developments,this study introduces a novel framework for airfoil design via natural language interfaces.To the authors’knowledge,this study establishes the first end-to-end,bidirectional mapping between textual descriptions(e.g.,“low-drag supercritical wing for transonic conditions”)and parametric airfoil geometries represented by class-shape transformation parameters.The proposed approach integrates a CLIP-inspired architecture that aligns text embeddings with airfoil parameter spaces through contrastive learning,along with a semantically conditioned decoder that produces physically plausible airfoil geometries from latent representations.The experimental results validate the framework’s ability to generate aerodynamically plausible airfoils from natural language specifications and to classify airfoils accurately based on given textual labels.This research reduces the expertise threshold for preliminary airfoil design and highlights the potential for human-AI collaboration in aerospace engineering.展开更多
翼型及机翼优化设计中,设计变量的个数对优化算法的收敛速度及代理模型的精度有很大的影响。因此,在精确描述翼型的同时,发展较少设计变量的翼型参数化方法对翼型优化设计有着重要的意义。本文基于CST(class function/shape function tr...翼型及机翼优化设计中,设计变量的个数对优化算法的收敛速度及代理模型的精度有很大的影响。因此,在精确描述翼型的同时,发展较少设计变量的翼型参数化方法对翼型优化设计有着重要的意义。本文基于CST(class function/shape function transformation)翼型参数化方法对Kriging模型的预测精度进行研究,并采用改进的粒子群优化算法构建气动优化设计系统。某亚声速机翼单点减阻设计及超临界翼型的稳健性设计表明该系统具有较高的设计质量,方法可靠,有较高的工程应用前景。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U23A2069,12372288,12388101,and 92152301)Jilin Province Science and Technology Development Program,China(Grant No.20220301013GX)Aeronautical Science Foundation of China(Grant No.2020Z006058002)。
文摘Recent advances in contrastive language-image pretraining(CLIP)models and generative AI have demonstrated significant capabilities in cross-modal understanding and content generation.Based on these developments,this study introduces a novel framework for airfoil design via natural language interfaces.To the authors’knowledge,this study establishes the first end-to-end,bidirectional mapping between textual descriptions(e.g.,“low-drag supercritical wing for transonic conditions”)and parametric airfoil geometries represented by class-shape transformation parameters.The proposed approach integrates a CLIP-inspired architecture that aligns text embeddings with airfoil parameter spaces through contrastive learning,along with a semantically conditioned decoder that produces physically plausible airfoil geometries from latent representations.The experimental results validate the framework’s ability to generate aerodynamically plausible airfoils from natural language specifications and to classify airfoils accurately based on given textual labels.This research reduces the expertise threshold for preliminary airfoil design and highlights the potential for human-AI collaboration in aerospace engineering.
文摘翼型及机翼优化设计中,设计变量的个数对优化算法的收敛速度及代理模型的精度有很大的影响。因此,在精确描述翼型的同时,发展较少设计变量的翼型参数化方法对翼型优化设计有着重要的意义。本文基于CST(class function/shape function transformation)翼型参数化方法对Kriging模型的预测精度进行研究,并采用改进的粒子群优化算法构建气动优化设计系统。某亚声速机翼单点减阻设计及超临界翼型的稳健性设计表明该系统具有较高的设计质量,方法可靠,有较高的工程应用前景。