期刊文献+
共找到78,803篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-target neural circuit reconstruction and enhancement in spinal cord injury 被引量:1
1
作者 Lingyun Cao Siyun Chen +2 位作者 Shuping Wang Ya Zheng Dongsheng Xu 《Neural Regeneration Research》 2026年第3期957-971,共15页
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim... After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions. 展开更多
关键词 multi-targets nerve root magnetic stimulation neural circuit NEUROMODULATION peripheral nerve stimulation RECONSTRUCTION spinal cord injury task-oriented training TIMING transcranial magnetic stimulation
暂未订购
Neural circuit mechanisms of epilepsy:Maintenance of homeostasis at the cellular,synaptic,and neurotransmitter levels
2
作者 Xueqing Du Yi Wang +2 位作者 Xuefeng Wang Xin Tian Wei Jing 《Neural Regeneration Research》 2026年第2期455-465,共11页
Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at th... Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at the molecular,cellular,and neural circuit levels.Abnormal molecular signaling pathways or dysfunction of specific cell types can lead to epilepsy by disrupting the normal functioning of neural circuits.The continuous emergence of new technologies and the rapid advancement of existing ones have facilitated the discovery and comprehensive understanding of the neural circuit mechanisms underlying epilepsy.Therefore,this review aims to investigate the current understanding of the neural circuit mechanisms in epilepsy based on various technologies,including electroencephalography,magnetic resonance imaging,optogenetics,chemogenetics,deep brain stimulation,and brain-computer interfaces.Additionally,this review discusses these mechanisms from three perspectives:structural,synaptic,and transmitter circuits.The findings reveal that the neural circuit mechanisms of epilepsy encompass information transmission among different structures,interactions within the same structure,and the maintenance of homeostasis at the cellular,synaptic,and neurotransmitter levels.These findings offer new insights for investigating the pathophysiological mechanisms of epilepsy and enhancing its clinical diagnosis and treatment. 展开更多
关键词 chemical genetics hippocampus literature review neural circuits NEUROTRANSMITTER OPTOGENETICS pathogenesis SEIZURE synapses THALAMUS
暂未订购
Transplantation of human neural stem cells repairs neural circuits and restores neurological function in the stroke-injured brain
3
作者 Peipei Wang Peng Liu +7 位作者 Yingying Ding Guirong Zhang Nan Wang Xiaodong Sun Mingyue Li Mo Li Xinjie Bao Xiaowei Chen 《Neural Regeneration Research》 2026年第3期1162-1171,共10页
Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after inju... Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke.Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury,which limits the ability to observe long-term behavioral recovery.Here,we used a severe stroke rat model with 150 minutes of ischemia,which produced severe behavioral deficiencies that persisted at 12 weeks,to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke.Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function,reduced infarction volume,long-term human neural stem cell survival,and improved local inflammatory environment and angiogenesis.We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo,formed stable functional synaptic connections with host neurons,and exhibited the electrophysiological properties of functional mature neurons,indicating that they replaced the damaged host neurons.The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke,which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients. 展开更多
关键词 behavioral recovery circuit repair electrophysiological properties functional integration human neural stem cell transplantation infarction volume STROKE synaptic tracing
暂未订购
Preface to Special Topic on Integrated Circuits, Technologies and Applications 2024
4
作者 Zheng Wang Yan Lu 《Journal of Semiconductors》 2025年第6期6-7,共2页
This Special Topic of the Journal of Semiconductors(JOS)features expanded versions of key articles presented at the 2024 IEEE International Conference on Integrated Circuits Technologies and Applications(ICTA),which w... This Special Topic of the Journal of Semiconductors(JOS)features expanded versions of key articles presented at the 2024 IEEE International Conference on Integrated Circuits Technologies and Applications(ICTA),which was held in Hangzhou,Zhejiang,China,from October 25 to 27,2024. 展开更多
关键词 TECHNOLOGIES IEEE International Conference Integrated circuits Technologies Applications integrated circuits technologies integrated circuits ZHEJIANG expanded versions key articles journal semiconductors APPLICATIONS
在线阅读 下载PDF
MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits
5
作者 Yuehua Cui Xiaokuang Ma +7 位作者 Jing Wei Chang Chen Neha Shakir Hitesch Guirram Zhiyu Dai Trent Anderson Deveroux Ferguson Shenfeng Qiu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1431-1444,共14页
Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi... Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions. 展开更多
关键词 aging circuit connectivity cortical circuits molecular mechanisms neural regeneration NEURODEGENERATION synapses
暂未订购
LIRB-Based Quantum Circuit Fidelity Assessment and Gate Fault Diagnosis
6
作者 Mengdi Yang Feng Yue +11 位作者 Weilong Wang Xiangdong Meng Lixin Wang Pengyu Han Haoran He Benzheng Yuan Zhiqiang Fan Chenhui Wang Qiming Du Danyang Zheng Xuefei Feng Zheng Shan 《Computers, Materials & Continua》 2025年第2期2215-2233,共19页
Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fid... Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fidelity include direct fidelity estimation and mirror circuit fidelity estimation. The former is challenging to implement in practice, while the latter requires substantial classical computational resources and numerous experimental runs. In this paper, we propose a fidelity estimation method based on Layer Interleaved Randomized Benchmarking, which decomposes a complex quantum circuit into multiple sublayers. By independently evaluating the fidelity of each layer, one can comprehensively assess the performance of the entire quantum circuit. This layered evaluation strategy not only enhances accuracy but also effectively identifies and analyzes errors in specific quantum gates or qubits through independent layer evaluation. Simulation results demonstrate that the proposed method improves circuit fidelity by an average of 6.8% and 4.1% compared to Layer Randomized Benchmarking and Interleaved Randomized Benchmarking methods in a thermal relaxation noise environment, and by 40% compared to Layer RB in a bit-flip noise environment. Moreover, the method detects preset faulty quantum gates in circuits generated by the Munich Quantum Toolkit Benchmark, verifying the model’s validity and providing a new tool for faulty gate detection in quantum circuits. 展开更多
关键词 Quantum circuits Interleaved Random Benchmarking(IRB) circuit fidelity fault gates
在线阅读 下载PDF
The Exploration of the Application of Electronic Circuit Simulation Technology in Integrated Circuit Design
7
作者 Shengjie He 《Journal of Electronic Research and Application》 2025年第2期89-97,共9页
With the rapid development of Internet technology,the application of electronic circuit simulation technology is more and more extensive,and now it has been applied to integrated circuit design.Because the electronic ... With the rapid development of Internet technology,the application of electronic circuit simulation technology is more and more extensive,and now it has been applied to integrated circuit design.Because the electronic circuit simulation technology has high efficiency,flexible and simple application,as well as stable performance,it has shown more and more good application prospects in integrated circuit design.Based on the strong development trend of electronic circuit simulation technology,it will be more and more widely used in daily life in the future,so the research on electronic circuit simulation technology is more and more in-depth.In this paper,the application of electronic circuit technology in integrated circuit design is studied,hoping that the technology can provide a more concise and efficient research and development way for electronic applications. 展开更多
关键词 Electronic circuit Simulation technology Integrated circuit
在线阅读 下载PDF
Research on Optimization of Hierarchical Quantum Circuit Scheduling Strategy
8
作者 Ziao Han Hui Li +2 位作者 Kai Lu Shujuan Liu Mingmei Ju 《Computers, Materials & Continua》 2025年第3期5097-5113,共17页
Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parall... Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parallelized.Based on this,two quantum circuit scheduling optimization approaches are designed and integrated into the quantum circuit compilation process.Firstly,we introduce the Layered Topology Scheduling Approach(LTSA),which employs a greedy algorithm and leverages the principles of topological sorting in graph theory.LTSA allocates quantum gates to a layered structure,maximizing the concurrent execution of quantum gate operations.Secondly,the Layerwise Conflict Resolution Approach(LCRA)is proposed.LCRA focuses on utilizing directly executable quantum gates within layers.Through the insertion of SWAP gates and conflict resolution checks,it minimizes conflicts and enhances parallelism,thereby optimizing the overall computational efficiency.Experimental findings indicate that LTSA and LCRA individually achieve a noteworthy reduction of 51.1%and 53.2%,respectively,in the number of inserted SWAP gates.Additionally,they contribute to a decrease in hardware gate overhead by 14.7%and 15%,respectively.Considering the intricate nature of quantum circuits and the temporal dependencies among different layers,the amalgamation of both approaches leads to a remarkable 51.6%reduction in inserted SWAP gates and a 14.8%decrease in hardware gate overhead.These results underscore the efficacy of the combined LTSA and LCRA in optimizing quantum circuit compilation. 展开更多
关键词 Quantum circuit scheduling layered topology scheduling approach(LTSA) layerwise conflict resolu-tion approach(LCRA) quantum computing quantum circuit compilation
在线阅读 下载PDF
Postnatal critical-period brain plasticity and neurodevelopmental disorders:revisited circuit mechanisms
9
作者 Ziwei Shang Xiaohui Zhang 《Journal of Genetics and Genomics》 2025年第10期1177-1188,共12页
Critical periods(CPs)are defined as postnatal developmental windows during which brain circuits exhibit heightened sensitivity to altered experiences or sensory inputs,particularly during brain development in humans a... Critical periods(CPs)are defined as postnatal developmental windows during which brain circuits exhibit heightened sensitivity to altered experiences or sensory inputs,particularly during brain development in humans and animals.During the CP,experience-induced refinements of neural connections are crucial for establishing adaptive and mature brain functions,and aberrant CPs are often accompanied by many neurodevelopmental disorders(NDDs),including autism spectrum disorders and schizophrenia.Understanding neural mechanisms underlying the CP regulation is key to delineating the etiology of NDDs caused by abnormal postnatal neurodevelopment.Recent evidence from studies using innovative experimental tools has continuously revisited the inhibition-gating theory of CP to systematically elucidate the differential roles of distinct inhibitory circuits.Here,we provide a comprehensive review of classical experimental findings and emerging inhibitory-circuit regulation mechanisms of the CP,and further discuss how aberrant CP plasticity is associated with NDDs. 展开更多
关键词 Critical periods Experience-dependent brain plasticity Inhibitory circuits Neurodevelopmental disorders Microcircuit mechanism
原文传递
Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder 被引量:3
10
作者 Xiangyun Tian Scott J.Russo Long Li 《Neuroscience Bulletin》 2025年第2期272-288,共17页
Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experienci... Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention. 展开更多
关键词 DEPRESSION Animal models STRESS Neural circuits
原文传递
Near‑Sensor Edge Computing System Enabled by a CMOS Compatible Photonic Integrated Circuit Platform Using Bilayer AlN/Si Waveguides 被引量:1
11
作者 Zhihao Ren Zixuan Zhang +4 位作者 Yangyang Zhuge Zian Xiao Siyu Xu Jingkai Zhou Chengkuo Lee 《Nano-Micro Letters》 2025年第11期1-20,共20页
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc... The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment. 展开更多
关键词 Photonic integrated circuits Edge computing Aluminum nitride Neural networks Wearable sensors
在线阅读 下载PDF
基于EveryCircuit实现翻转课堂在电路基础及实验课程中的应用
12
作者 张东方 刘红 +2 位作者 李康康 再比尔妮萨·达伍提 伊米兰·玉散 《工业控制计算机》 2025年第4期156-158,共3页
“电路基础及实验”是一门理论和实践相结合的重要课程,对学生未来的专业发展具有关键作用。由于部分高校实验器材不足,学生的学习效果受到限制,EveryCircuit电路模拟器的出现为解决这一问题提供了有效途径。手机仿真软件简单易学,可以... “电路基础及实验”是一门理论和实践相结合的重要课程,对学生未来的专业发展具有关键作用。由于部分高校实验器材不足,学生的学习效果受到限制,EveryCircuit电路模拟器的出现为解决这一问题提供了有效途径。手机仿真软件简单易学,可以激发学生的学习兴趣,同时仿真软件在重复性、安全性、经济性、操作方便性等方面有其独特优势。而EveryCircuit基于理想元件构成电路并实施仿真,特别适合于初学者分析和设计电路使用,将抽象又深奥的电路课程生动形象地展现在手机上。 展开更多
关键词 Everycircuit 仿真 电路基础
在线阅读 下载PDF
Design and validation of RLC equivalent circuit model based on long-wave infrared metamaterial absorber
13
作者 ZHAO Ji-Cong DANG Yan-Meng +3 位作者 HOU Hai-Yang LIN Ye-Fan SUN Hai-Yan ZHANG Kun 《红外与毫米波学报》 北大核心 2025年第1期129-137,共9页
In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize... In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model. 展开更多
关键词 METAMATERIAL surface plasmons magnetic dipoles RLC circuit model
在线阅读 下载PDF
Quantum Circuit Implementation and Resource Evaluation of Ballet‑p/k Under Grover’s Attack
14
作者 HONG Rui-Peng ZHANG Lei +3 位作者 PANG Chen-Xu LI Guo-Yuan DING Ding WANG Jian-Xin 《密码学报(中英文)》 北大核心 2025年第5期1178-1194,共17页
The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for thre... The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3. 展开更多
关键词 Grover’s algorithm quantum circuit Ballet family block ciphers quantum ripple-carry adder
在线阅读 下载PDF
A New AC Driving Method for a Current-Programmed AM-OLED Pixel Circuit 被引量:2
15
作者 司玉娟 徐艳蕾 +2 位作者 郎六琪 陈新发 刘式墉 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第9期1562-1565,共4页
A new,improved pixel-driving circuit is presented based on a current-programmed pixel circuit in order to achieve an AC-driving mode. This driving method realizes an AC-driving mode,removes the threshold voltage varia... A new,improved pixel-driving circuit is presented based on a current-programmed pixel circuit in order to achieve an AC-driving mode. This driving method realizes an AC-driving mode,removes the threshold voltage variation of the driving TFT due to the process variation or long-term operation,which can bring about brightness non-uniformity, and eliminates high peak pulse currents at the beginning and end of recovery time. Simulation is done with AIM-SPICE,and simulation results demonstrate that the OLED is in the reverse-biased state during recovery time. 展开更多
关键词 active matrix OLED AC pixel-driving circuit TFT AIM-SPICE simulation current-programmed pixel-driving circuit
在线阅读 下载PDF
Study and circuit design of stochastic resonance system based on memristor chaos induction
16
作者 Qi Liang Wen-Xin Yu Qiu-Mei Xiao 《Chinese Physics B》 2025年第4期312-321,共10页
Memristor chaotic research has become a hotspot in the academic world.However,there is little exploration combining memristor and stochastic resonance,and the correlation research between chaos and stochastic resonanc... Memristor chaotic research has become a hotspot in the academic world.However,there is little exploration combining memristor and stochastic resonance,and the correlation research between chaos and stochastic resonance is still in the preliminary stage.In this paper,we focus on the stochastic resonance induced by memristor chaos,which enhances the dynamics of chaotic systems through the introduction of memristor and induces memristor stochastic resonance under certain conditions.First,the memristor chaos model is constructed,and the memristor stochastic resonance model is constructed by adjusting the parameters of the memristor chaos model.Second,the combination of dynamic analysis and experimental verification is used to analyze the memristor stochastic resonance and to investigate the trend of the output signal of the system under different amplitudes of the input signal.Finally,the practicality and reliability of the constructed model are further verified through the design and testing of the analog circuit,which provides strong support for the practical application of the memristor chaos-induced stochastic resonance model. 展开更多
关键词 MEMRISTOR CHAOS stochastic resonance circuitS
原文传递
CRISPR-Cas systems in DNA functional circuits:Strategies,challenges,prospects
17
作者 Xiaolong Li Changjiang Li +4 位作者 Chaopeng Shi Jiarun Wang Bei Yan Xianjin Xiao Tongbo Wu 《Chinese Chemical Letters》 2025年第7期49-57,共9页
Strand displacement-based DNA circuits have emerged as highly effective tools for molecular computation,serving purposes of amplification or decision-making.They are favored for their inherent occurrence and sensitivi... Strand displacement-based DNA circuits have emerged as highly effective tools for molecular computation,serving purposes of amplification or decision-making.They are favored for their inherent occurrence and sensitivity to external conditions.However,achieving enhanced amplification or decision-making necessitates the incorporation of multiple strands,thereby increasing the risk of contamination.Recent advancements have led to the development of CRISPR-Cas-based DNA circuits.These systems aim to simplify the complexity associated with conventional circuits,mitigate contamination risks,and enable more substantial amplification or decision-making capabilities.Here,the review article centers on current strategies of CRISPR-Cas(Cas9,Cas12a,Cas13a)system-assisted circuits in amplification and decisionmaking,and assesses their tendencies and limitations in amplification circuits and decision-making circuits.Furthermore,we discuss the challenges of CRISPR-Cas in circuits and propose prospects that will contribute to constructing more efficient and diverse CRISPR-Cas-based DNA functional circuits. 展开更多
关键词 CRISPR-Cas DNA circuit AMPLIFICATION DECISION-MAKING
原文传递
Development and Characterization of a Non-Enzymatic Glucose Biosensor Based on a Gold Film EG-FET and an Inverting Amplifier Readout Circuit
18
作者 Xintai Dong 《Journal of Electronic Research and Application》 2025年第6期302-312,共11页
The development of low-cost,non-enzymatic glucose biosensors is crucial for advancing accessible diabetes management.This paper presents the experimental testing of an extended-gate field-effect transistor(EG-FET)that... The development of low-cost,non-enzymatic glucose biosensors is crucial for advancing accessible diabetes management.This paper presents the experimental testing of an extended-gate field-effect transistor(EG-FET)that uses a gold film as the sensing structure.The system innovatively employs a custom-designed inverting operational amplifier circuit for precise signal acquisition and an Arduino Nano platform for real-time data processing and visualization,eliminating the need for expensive laboratory equipment.At the core of the design is a depletion-mode MOSFET,whose current-voltage properties were characterized.The function of the sensor was demonstrated by testing its response to phosphate-buffered saline containing glucose at different concentrations.A clear modulation of the drain current in the linear region of the EG-FET was observed,and a preliminary analysis revealed a linear correlation between the output current and glucose concentration,indicating the system’s potential for quantitative detection.This study successfully validates the feasibility of a compact,cost-effective,and non-enzymatic EG-FET biosensing platform,establishing a solid foundation for future development of point-of-care diagnostic devices. 展开更多
关键词 EG-FET Glucose detection Non-enzymatic biosensor Readout circuit
在线阅读 下载PDF
To Attack or Not: A Neural Circuit Coding Sexually Dimorphic Aggression
19
作者 Qiuhong Xin Hailan Hu 《Neuroscience Bulletin》 2025年第4期728-730,共3页
Aggression,an evolutionarily conserved social behavior,is essential for animals to compete for valuable resources like food,territory,and mates,and to protect kin.Although aggression is required for the survival of bo... Aggression,an evolutionarily conserved social behavior,is essential for animals to compete for valuable resources like food,territory,and mates,and to protect kin.Although aggression is required for the survival of both sexes,it is often displayed in a sexually dimorphic manner,with males typically exhibiting higher levels of aggression than females. 展开更多
关键词 resource competition kin protection MATES social behavior AGGRESSION sexually dimorphic aggression FOOD neural circuit
原文传递
High-Frequency Stable Wireless Amplitude Modulation System Based on a Pierce Circuit
20
作者 Huiwen Xu 《Journal of Electronic Research and Application》 2025年第5期61-70,共10页
This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cy... This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cycle,combined with a 41 MHz carrier wave produced by a passive crystal oscillator Pierce circuit.A 100% modulation index amplitude modulation is achieved through the AD835 multiplier.The modulated signal is amplified by a power amplifier circuit and transmitted wirelessly via the transmitter antenna.Upon reception,the signal undergoes two-stage highfrequency amplification before passing through a Schottky diode envelope detector.The NE5532 shaping circuit then restores the square wave.Experimental results demonstrate reliable 11-meter transmission with carrier frequency deviation<0.75% and demodulation error<1%. 展开更多
关键词 Wireless transmission Amplitude modulation Pierce circuit Low power consumption
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部