Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To ...Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To address these problems,this paper proposes an enhanced Fully Homomorphic Encryption(FHE)algorithm based on an improved DGHV algorithm,coupled with an optimized ciphertext retrieval scheme.Our specific contributions are outlined as follows:First,we employ an authorization code to verify the user’s retrieval authority and perform hierarchical access control on cloud storage data.Second,a triple-key encryption mechanism,which separates the data encryption key,retrieval authorization key,and retrieval key,is designed.Different keys are provided to different entities to run corresponding system functions.The key separation architecture proves particularly advantageous in multi-verifier coexistence scenarios,environments involving untrusted third-party retrieval services.Finally,the enhanced DGHV-based retrieval mechanism extends conventional functionality by enabling multi-keyword queries with similarity-ranked results,thereby significantly improving both the functionality and usability of the FHE system.展开更多
Due to its characteristics distribution and virtualization, cloud storage also brings new security problems. User's data is stored in the cloud, which separated the ownership from management. How to ensure the securi...Due to its characteristics distribution and virtualization, cloud storage also brings new security problems. User's data is stored in the cloud, which separated the ownership from management. How to ensure the security of cloud data, how to increase data availability and how to improve user privacy perception are the key issues of cloud storage research, especially when the cloud service provider is not completely trusted. In this paper, a cloud storage ciphertext retrieval scheme based on AES and homomorphic encryption is presented. This ciphertext retrieval scheme will not only conceal the user retrieval information, but also prevent the cloud from obtaining user access pattern such as read-write mode, and access frequency, thereby ensuring the safety of the ciphertext retrieval and user privacy. The results of simulation analysis show that the performance of this ciphertext retrieval scheme requires less overhead than other schemes on the same security level.展开更多
基金supported by the Innovation Program for Quantum Science and technology(2021ZD0301300)supported by the Fundamental Research Funds for the Central Universities(Nos.3282024046,3282024052,3282024058,3282023017).
文摘Ciphertext data retrieval in cloud databases suffers from some critical limitations,such as inadequate security measures,disorganized key management practices,and insufficient retrieval access control capabilities.To address these problems,this paper proposes an enhanced Fully Homomorphic Encryption(FHE)algorithm based on an improved DGHV algorithm,coupled with an optimized ciphertext retrieval scheme.Our specific contributions are outlined as follows:First,we employ an authorization code to verify the user’s retrieval authority and perform hierarchical access control on cloud storage data.Second,a triple-key encryption mechanism,which separates the data encryption key,retrieval authorization key,and retrieval key,is designed.Different keys are provided to different entities to run corresponding system functions.The key separation architecture proves particularly advantageous in multi-verifier coexistence scenarios,environments involving untrusted third-party retrieval services.Finally,the enhanced DGHV-based retrieval mechanism extends conventional functionality by enabling multi-keyword queries with similarity-ranked results,thereby significantly improving both the functionality and usability of the FHE system.
基金the National Natural Science Foundation of China under Grant,the Fundamental Research Funds for the Central Universities under Grant No.FRF-TP-14-046A2
文摘Due to its characteristics distribution and virtualization, cloud storage also brings new security problems. User's data is stored in the cloud, which separated the ownership from management. How to ensure the security of cloud data, how to increase data availability and how to improve user privacy perception are the key issues of cloud storage research, especially when the cloud service provider is not completely trusted. In this paper, a cloud storage ciphertext retrieval scheme based on AES and homomorphic encryption is presented. This ciphertext retrieval scheme will not only conceal the user retrieval information, but also prevent the cloud from obtaining user access pattern such as read-write mode, and access frequency, thereby ensuring the safety of the ciphertext retrieval and user privacy. The results of simulation analysis show that the performance of this ciphertext retrieval scheme requires less overhead than other schemes on the same security level.