Securing digital data from unauthorized access throughout its entire lifecycle has been always a critical concern.A robust data security system should protect the information assets of any organization against cybercr...Securing digital data from unauthorized access throughout its entire lifecycle has been always a critical concern.A robust data security system should protect the information assets of any organization against cybercriminal activities.The Twofish algorithm is one of the well-known symmetric key block cipher cryptographic algorithms and has been known for its rapid convergence.But when it comes to security,it is not the preferred cryptographic algorithm to use compared to other algorithms that have shown better security.Many applications and social platforms have adopted other symmetric key block cipher cryptographic algorithms such as the Advanced Encryption Standard(AES)algorithm to construct their main security wall.In this paper,a new modification for the original Twofish algorithm is proposed to strengthen its security and to take advantage of its fast convergence.The new algorithm has been named Split-n-Swap(SnS).Performance analysis of the new modification algorithm has been performed using different measurement metrics.The experimental results show that the complexity of the SnS algorithm exceeds that of the original Twofish algorithm while maintaining reasonable values for encryption and decryption times as well as memory utilization.A detailed analysis is given with the strength and limitation aspects of the proposed algorithm.展开更多
Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption S...Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption Standard (AES) algorithm is widely applied in government department and commerce. This paper analyzed the AES algorithms with different cipher keys, adopted a novel key scheduler that generated the round key real-time, proposed a dynamically reconfigurable encryption system which supported the AES algorithm with different cipher keys, and designed the architecture of the reconfigurable system. The dynamically reconfigurable AES system had been realized on FPGA. The result proves that the reconfigurable AES system is flexible, lower cost and high security level.展开更多
With the large scale adoption of Internet of Things(IoT)applications in people’s lives and industrial manufacturing processes,IoT security has become an important problem today.IoT security significantly relies on th...With the large scale adoption of Internet of Things(IoT)applications in people’s lives and industrial manufacturing processes,IoT security has become an important problem today.IoT security significantly relies on the security of the underlying hardware chip,which often contains critical information,such as encryption key.To understand existing IoT chip security,this study analyzes the security of an IoT security chip that has obtained an Arm Platform Security Architecture(PSA)Level 2 certification.Our analysis shows that the chip leaks part of the encryption key and presents a considerable security risk.Specifically,we use commodity equipment to collect electromagnetic traces of the chip.Using a statistical T-test,we find that the target chip has physical leakage during the AES encryption process.We further use correlation analysis to locate the detailed encryption interval in the collected electromagnetic trace for the Advanced Encryption Standard(AES)encryption operation.On the basis of the intermediate value correlation analysis,we recover half of the 16-byte AES encryption key.We repeat the process for three different tests;in all the tests,we obtain the same result,and we recover around 8 bytes of the 16-byte AES encryption key.Therefore,experimental results indicate that despite the Arm PSA Level 2 certification,the target security chip still suffers from physical leakage.Upper layer application developers should impose strong security mechanisms in addition to those of the chip itself to ensure IoT application security.展开更多
文摘Securing digital data from unauthorized access throughout its entire lifecycle has been always a critical concern.A robust data security system should protect the information assets of any organization against cybercriminal activities.The Twofish algorithm is one of the well-known symmetric key block cipher cryptographic algorithms and has been known for its rapid convergence.But when it comes to security,it is not the preferred cryptographic algorithm to use compared to other algorithms that have shown better security.Many applications and social platforms have adopted other symmetric key block cipher cryptographic algorithms such as the Advanced Encryption Standard(AES)algorithm to construct their main security wall.In this paper,a new modification for the original Twofish algorithm is proposed to strengthen its security and to take advantage of its fast convergence.The new algorithm has been named Split-n-Swap(SnS).Performance analysis of the new modification algorithm has been performed using different measurement metrics.The experimental results show that the complexity of the SnS algorithm exceeds that of the original Twofish algorithm while maintaining reasonable values for encryption and decryption times as well as memory utilization.A detailed analysis is given with the strength and limitation aspects of the proposed algorithm.
基金Supported by the National Natural Science Foun-dation of China (60374008)
文摘Reconfigurable computing has grown to become an important and large field of research, it offers advantages over traditional hardware and software implementations of computational algorithms. The Advanced Encryption Standard (AES) algorithm is widely applied in government department and commerce. This paper analyzed the AES algorithms with different cipher keys, adopted a novel key scheduler that generated the round key real-time, proposed a dynamically reconfigurable encryption system which supported the AES algorithm with different cipher keys, and designed the architecture of the reconfigurable system. The dynamically reconfigurable AES system had been realized on FPGA. The result proves that the reconfigurable AES system is flexible, lower cost and high security level.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.61872243 and U1713212)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515011489)+1 种基金the Natural Science Foundation of Guangdong Province-Outstanding Youth Program(No.2019B151502018)Shenzhen Science and Technology Innovation Commission(No.R2020A045).
文摘With the large scale adoption of Internet of Things(IoT)applications in people’s lives and industrial manufacturing processes,IoT security has become an important problem today.IoT security significantly relies on the security of the underlying hardware chip,which often contains critical information,such as encryption key.To understand existing IoT chip security,this study analyzes the security of an IoT security chip that has obtained an Arm Platform Security Architecture(PSA)Level 2 certification.Our analysis shows that the chip leaks part of the encryption key and presents a considerable security risk.Specifically,we use commodity equipment to collect electromagnetic traces of the chip.Using a statistical T-test,we find that the target chip has physical leakage during the AES encryption process.We further use correlation analysis to locate the detailed encryption interval in the collected electromagnetic trace for the Advanced Encryption Standard(AES)encryption operation.On the basis of the intermediate value correlation analysis,we recover half of the 16-byte AES encryption key.We repeat the process for three different tests;in all the tests,we obtain the same result,and we recover around 8 bytes of the 16-byte AES encryption key.Therefore,experimental results indicate that despite the Arm PSA Level 2 certification,the target security chip still suffers from physical leakage.Upper layer application developers should impose strong security mechanisms in addition to those of the chip itself to ensure IoT application security.