To elucidate the formation mechanisms of burn-on sand and metal penetration during sand casting,some laboratory experiments were carried out at different temperatures(1813,1833,1853,and 1873 K)and holding time(20,40,6...To elucidate the formation mechanisms of burn-on sand and metal penetration during sand casting,some laboratory experiments were carried out at different temperatures(1813,1833,1853,and 1873 K)and holding time(20,40,60,and 90 min)to simulate the interaction between ZG13Cr9Mo1VNbN stainless steel and chromite sand.The results demonstrate that the defects primarily consist of a mixture of the liquid phase,chromite,and metal.The main components of the liquid phase are SiO_(2),MnO,MgO,Cr_(2)O_(3),FeO,and Al_(2)O_(3),and the formation of Cr_(2)O_(3)through interfacial redox reactions has been discovered.The presence of a liquid phase plays a pivotal role in influencing burn-on sand and metal penetration.Interface reactions are prioritized,with burn-on sand maintaining a predominant influence.As the liquid phase quantity within the sand escalates,there is a corresponding incremental rise in the incidence of metal penetration.Even a minimal presence of the silicon element in steel can impact the liquid phase’s formation.Moreover,the decomposition or dissolution of chromite sand is a significant factor in the development of burn-on sand and metal penetration.Thus,a thorough investigation into the conditions and contributing factors of this phenomenon is essential for its effective management and mitigation.展开更多
Stainless steel,known for its exceptional properties and diverse applications,conventionally requires a multistage process that generates considerable CO_(2) emissions by using fossil-based carbon reductants.This stud...Stainless steel,known for its exceptional properties and diverse applications,conventionally requires a multistage process that generates considerable CO_(2) emissions by using fossil-based carbon reductants.This study investigated hydrogen plasma smelting reduction as a novel,sustainable,and efficient method for producing stainless steel directly from lateritic nickel and chromite ores.The research aimed to examine the effect of ore proportion on AISI 300 series stainless steel production and assess the reduction process over time through thermochemical calculations and experimental studies.Results showed that increasing the proportion of chromite ore in the feed raises Cr content and reduces Ni content in metals while increasing Cr_(2)O_(3) and Al_(2)O_(3) content in oxides.A briquette comprising 30wt%chromite ore and 70wt%calcined nickel ore yields better results for AISI 300 stainless steel,with Fe,Cr,Ni,and Si content of 62.95wt%,19.37wt%,11.83wt%,and 0.72wt%,respectively,after 180 s of hydrogen plasma exposure.Nearly all NiO compounds are converted into Ni after 60 s of smelting reduction,whereas FeO compounds are almost fully converted into Fe after 120 s of smelting reduction.AISI 300 series stainless steel is successfully produced after 120 s of reduction,achieving Fe,Cr,Ni,and Si content of 64.36wt%,21.92wt%,10.08wt%,and 0.61wt%,respectively.Process optimization remains promising because the Cr_(2)O_(3) content in the slag is still relatively high at 15.52wt%.This ultrafast and direct production method holds considerable potential to transform stainless steel production by reducing environmental impact and enhancing process efficiency.Specifically,the method eliminates the use of an argon oxygen decarburization converter and vacuum oxygen decarburization in stainless steelmaking.展开更多
The enrichment of chromium in the magnetic iron chromite(Fe(Cr_(x)Fe_(1-x))_(2)O_(4))phase is crucial for the recovery and recycling of chromium in stainless-steel pickling sludge.The kinetics and reaction mechanism o...The enrichment of chromium in the magnetic iron chromite(Fe(Cr_(x)Fe_(1-x))_(2)O_(4))phase is crucial for the recovery and recycling of chromium in stainless-steel pickling sludge.The kinetics and reaction mechanism of the solid-phase reaction between Fe_(3)O_(4)and Cr_(2)O_(3)were investigated using the diffusion couple method at 1473 K.Not only the diffusion behavior of Fe^(2+)ions and Cr^(3+)ions was elucidated,but also the solid solution behavior of Fe^(3+)ions was discussed clearly.The microscopic morphology of the diffusion couple and the change in the concentrations of Fe and Cr cations across the diffusion layers were analyzed using scanning electron microscopy and en-ergy dispersive spectroscopy.The self-diffusion coefficients of cations were calculated based on the concentration profiles of Fe and Cr,with the results indicating that the self-diffusion coefficient of the Fe ions was consistently higher than that of the Cr ions.Additionally,a mixture of Fe_(3)O_(4)and Cr_(2)O_(3)was annealed at 1373-1473 K for 1-5 h,and the kinetic parameters were calculated by studying the phase content of the product.The phase content of Fe(Cr_(x)Fe_(1-x))_(2)O_(4)in the product was determined by Rietveld refinement of X-ray diffraction data,revealing that an activation energy(E)of 177.20 kJ·mol^(-1) and a pre-exponential factor(B)of 610.78 min^(-1)of the solid-phase reac-tion that produced the Fe(Cr_(x)Fe_(1-x))_(2)O_(4)spinel.展开更多
The podiform chromitites in the Luobusha ophiolite have been thought to experience a very deep formation,but the maximum depth is still an open issue.Here,we have investigated the structural stability of natural magne...The podiform chromitites in the Luobusha ophiolite have been thought to experience a very deep formation,but the maximum depth is still an open issue.Here,we have investigated the structural stability of natural magnesiochromite using the synchrotron-based powder X-ray diffraction and diamond anvil cells up to 48.6 GPa and 2450 K.The results have shown that spinel-type magnesiochromite first decomposes into corundum-type‘Cr_(2)O_(3)’+B1-type‘MgO’at 11–14 GPa and 1250–1450 K,then modified ludwigite(mLd)-type‘Mg_(2)Cr_(2)O_(5)’+corundum-type‘Cr_(2)O_(3)’at 14.3–20.5 GPa and 1300–2000 K,and finally CaTi_(2)O_(4)-type phase at 24.5 GPa.During the quenching procession from high-temperature-pressure conditions,the mLd-type phase appeared again and was kept at ambient conditions.We also obtained the isothermal equation states of spinel-type and CaTi_(2)O_(4)-type phases,revealing the composition effect on their elasticities.Based on the updated results,we propose chromitites could not experience pressure exceeding∼14.3 GPa(approximate maximum depth∼400 km)in the subduction-recycling genesis model.展开更多
The occurrence of rhythmic layering of chromite and host serpentinites in the deformed layered igneous complexes has been noticed in the Nuggihalli schist belt (NSB) in the western Dharwar craton, Karnataka, South I...The occurrence of rhythmic layering of chromite and host serpentinites in the deformed layered igneous complexes has been noticed in the Nuggihalli schist belt (NSB) in the western Dharwar craton, Karnataka, South India. For this study, the chromitite rock samples were collected from Jambur, Tagadur, Bhakatarhalli, Ranganbetta and Byrapur in the NSB. Petrography and ore microscopic studies on chromite show intense cataclasis and alteration to ferritchromite. The ferritchromite compositions are characterized by higher Cr number (Cr/[Cr+AI]) (0.68-0.98) and lower Mg number (Mg/[Mg+Fe]) (0.33-0.82) ratios in ferritchromite compared to that of parent chromite. The formation process for the ferritchromite is thought to be related to the exchange of Mg, AI, Cr, and Fe between the chromite, surrounding silicates (serpentines, chlorites), and fluid during serpentinization.展开更多
Listwanite from the Luobusa ophiolite, Tibet, forms a narrow, discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mine...Listwanite from the Luobusa ophiolite, Tibet, forms a narrow, discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mineral transformation processes and the behaviour of major and trace elements during listwanite formation. Three alteration zones characterized by distinct mineral components and texture are recognized and, in order of increasing degree of alteration, these are: zonem is rich in serpentine minerals; zonen is rich in talc and carbonates; and zone_Ⅰ is mainly composed of carbonates and quartz. Geochemical data for the three alteration zones show significant modification of some major and trace elements in the protolith, although some oxides show linear correlations with MgO. Gold mineralization is recognized in the Luobusa listwanite and may signify an important target for future mineral exploration. Gold enrichment occurs in both zone_Ⅰ and zone_Ⅱ and is up to 0.91 g/t in one sample from zonei. We show that CO_2-rich hydrothermal fluids can modify both the occurrence and composition of chromite grains, indicating some degree of chromite mobility. Low-Cr anhedral grains are more easily altered than high-Cr varieties. The compositions of chromite and olivine grains in the listwanite suggest a dunite protolith.展开更多
To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were stud...To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were studied. The thermodynamics calculation shows that all the standard Gibbs free energy changes of the reactions to form Na2CrO4, Na2O-Fe2O3, Na2O·Al2O3 and Na2O3 SiO2 via chromite ore and Na2CO3 are negative, and the standard Gibbs free energy changes of the reactions between MgO, Fe2O3 and SiO2 released from chromite spinel to form MgO-Fe2O3 and MgO·SiO2 are also negative at the oxidative roasting temperatures (1 173 1 473 K). The phrase analysis of the sinter in lime-free roasting process shows that Na2O·Fe2O3, Na2O·Al2O3 and Na2O·SiO2 can be formed in the first 20 min, but they decrease in contents and finally disappear with the increase of roasting time. The final phase compositions of the sinter are Na2CrO4, MgO·Fe2O3, MgO·SiO2 and MgO. The results indicate that Na2CrO4 can be formed easily via the reaction ofNa2CO3 with chromite ore. Na2O·Fe2O3, Na2O-Al2O3 and Na2O·SiO2 can be formed as intermediate compounds in the roasting process and they can further react with chromite ore to form Na2CrO4. MgO released from chromite ore may react with iron oxides and silicon oxide to form stable compounds of MgO·Fe2O3 and MgO·SiO2, respectively.展开更多
Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 mi...Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.展开更多
Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag comp...Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag component. The experimental results show that the carbonaceous component of the SPL is more reactive towards chromite reduction compared to graphite. The formation of refractory spinel (MgAl2O4) on chromite particles hinders further reduction and alloy growth. The slag-making components of the SPL (e.g. nepheline and NaF) form molten slags at low temperatures (~1300℃) and partly dissolve the refractory spinel as well as the chromite. Destruction of the spinel layer with enhanced mass transfer greatly improves the alloy growth, which can be further promoted by reduction at a higher temperature (e.g. 1500℃). Ferrochrome alloy particles grow large enough at 1500℃ in the presence of SPL, allowing effective separation from the slag component using elutriation separation.展开更多
Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial was...Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial waste water containing HF. The results show that HF can effectively destabilize the Cr(VI)-bearing minerals, resulting in the mobilization of Cr(VI) from COPR into the leachate. Particle size significantly influences the leaching of acid-soluble Cr(VI) from COPR, followed by leaching time, whereas the effects of HF concentration and leaching temperature are slight and the influence of stirring rate is negligible. The leaching process of acid-soluble Cr(VI) from COPR is controlled by the diffusion through the product layer. The apparent activation energy is 8.696 kJ/mol and the reaction orders with respect to HF concentration and particle size is 0.493 8 and -2.013 3, respectively.展开更多
Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the m...Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering hehaviour and per- formance of the sands under operative conditions. The effect of particle size distribution on sintering, microstruc- ture, flowability, and permeability were presented. In all cases, the particle size varies from 0.1 to 1.5 mm corre- sponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.展开更多
The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric...The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.展开更多
To avoid the nonuniform phenomena of heat and mass transfer of metallurgical powdery materials caused by conventional heating method,the temperature rise characteristics of carbon-containing chromite ore fines in the ...To avoid the nonuniform phenomena of heat and mass transfer of metallurgical powdery materials caused by conventional heating method,the temperature rise characteristics of carbon-containing chromite ore fines in the microwave field were investigated using microwave heating in a microwave metallurgical furnace.The experimental results show that the carbon-containing chromite ore fines have better temperature rise characteristics in the microwave field at a frequency of 2.45 GHz.After heated in the microwave field of 10 kW,the temperature of 1 kg carbon-containing chromite ore fines rose up to 1 100 ℃ in 7 min,at a temperature rise rate of 157.1(℃·min-1·kg-1),whereas the temperature of 1 kg carbon-containing magnetite ore fines rose only up to 1 000 ℃ in 10 min,at a temperature rise rate of 100(℃·min-1·kg-1).With increasing carbon-fitting ratios and by adding calcic lime,their heating effects changed regularly.展开更多
In this paper, environmental scanning electron microscopy (ESEM) is applied to characterizing the mineral and element distribution of chromite ore processing residue (COPR). The test results show that Cr-bearing b...In this paper, environmental scanning electron microscopy (ESEM) is applied to characterizing the mineral and element distribution of chromite ore processing residue (COPR). The test results show that Cr-bearing brownmillerite occurs in the rim of COPR particle, while hydroandradite with Cr (Ⅵ) in its structure presents inside the COPR particle. Periclase and calcite occur in the interstitial area. Element analyses show that Ca, Fe and Al are distributed throughout the COPR particle, and Mg exists mostly in the interstitial area or on the particle surface. A lower content of Cr is evenly distributed in the COPR particle, while slightly higher concentration of Cr occurs inside the particle. It is suggested that it will take a relatively longer time for Cr to migrate out of COPR, especially fbr hexavalent chromium, so the leaching time and the particle size may be two important factors to affect the release of Cr (Ⅵ).展开更多
The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, b...The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg–Al, Mg–Fe, and Mg–Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid–dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg–Al spinel and Mg–Fe spinel because Mg^(2+), Al^(3+), and Fe^(3+) in spinels cannot be oxidized by Cr^(6+). However, in the case of the Mg–Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid–dichromic acid solution was illustrated on the basis of the findings of this study.展开更多
The effect of surfactant polyoxyethylenesorbitan monolaurate (Tween-20) on the nickel bioleaching from pre-treated chromite overburden (COB), Sukinda with fungal strain Aspergillus niger, was examined in shake fla...The effect of surfactant polyoxyethylenesorbitan monolaurate (Tween-20) on the nickel bioleaching from pre-treated chromite overburden (COB), Sukinda with fungal strain Aspergillus niger, was examined in shake flasks. Along with the nickel recovery from COB by the fungal bioleaching, the effect of surfactant on the growth of the A. niger was also investigated. Results show that the addition of surfactant in low concentration was favorable for the recovery of nickel from pre-treated COB. Normally, the carbon source (sucrose) in the culture medium was utilized by the A. niger for its cellular metabolism and organic metabolites (bio acids) were produced, which were responsible for the bioleaching of minerals. However, the addition of surfactant (Tween-20) accelerated the rate of sucrose consumption by the fungi, and thus enhancing the extraction of nickel from pre-treated COB. During the study, around 39% nickel extraction was achieved in A. niger mediated bioleaching performed at 2% pulp density of pre-treated COB at 30 °C, in the presence of surfactant whereas only 24% nickel was extracted without surfactant.展开更多
The effective extracting Cr(Ⅵ) from chromite ore processing residue(COPR) is the key to achieve COPR detoxification and recovery.We developed an effective method to extract Cr(Ⅵ) from COPR via controlling the phase ...The effective extracting Cr(Ⅵ) from chromite ore processing residue(COPR) is the key to achieve COPR detoxification and recovery.We developed an effective method to extract Cr(Ⅵ) from COPR via controlling the phase transformation of Cr(Ⅵ)-containing minerals.Characteristic analysis showed that Cr(Ⅵ) was mainly incorporated in the hydrocalumite(NaCa4Al2O6(SO4/CrO4)1.5-15H2O) in COPR,which was a layered-double hydroxide(LDH) with multilayer structure.In the hydrothermal treatment experiments,the Na2CO3 solution showed significant extraction effect of Cr(Ⅵ) and detoxification effect of COPR.After treatment,95% of Cr(Ⅵ) was removed and the Cr(Ⅵ) concentration in the leachate was decreased to 1.6 mg/L by the toxicity characteristic leaching procedure(TCLP),within the regulatory limit disposal standard(HJ/T 301-2007,3 mg/L).Further study revealed that,during the treatment,hydrocalumite transformed into calcite(CaCO3) under the effect of mineralizer,therefore,the layered structure collapsed and the incorporated Cr(Ⅵ) was released to the supernatant.Meanwhile,the Cr(Ⅵ)desorbed from calcite with the calcite particles grew into large size with smooth surface.Stir-flow experiment revealed that the amount of chromium released from CORP to the environment was significantly reduced after treatment,and it is safer for landfill disposal.This work will provide an instructive guidance for the detoxification and recovery of COPR.展开更多
The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the p...The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the pollution indices.Soil samples(0-20 cm depth) were collected at various distances from the BCM.In the present research,heavy metals(Cr and Ni) in soil samples were analyzed by atomic absorption spectrometry to detect their concentrations and contour maps were produced to explain the metal spatial distribution.Also,the degree of metal pollution was quantified.The results indicate that the soils in the studied area are contaminated by Cr and Ni.The corresponding concentrations for Cr and Ni are(156.19±24.45) and(321.7±133.27) mg/kg,respectively,which exceed the corresponding maximum allowable concentrations in soils.The different indices demonstrate that soils around chromite mine are significantly contaminated with Cr and Ni,suggesting several times higher levels of toxic metals than normal ranges.The above results revealed that the heavy metal concentrations increase with increasing the distance from the mine and mining pollutants can be transported to long distances from their sources.展开更多
The Polar Urals region of northern Russia is well known for large chromium (Cr)-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolit...The Polar Urals region of northern Russia is well known for large chromium (Cr)-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt. New data on platinum (Pt)-group elements (PGE), geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium (Ir) values. These values indicate the predominance of ruthenium--osmium--iridium (Ru--Os--Ir)-bearing phases among the platinum-group mineral (PGM) assemblage that is typical of mantle-hosted chromite ores. Low Pt values in chromites and increased Pt values in host dunites might reflect the presence of cumulus PGM grains. The most abundant PGM found in the chromite is erlichmanite (up to 15 μm). Less common are cuproiridsite (up to 5 μm), irarsite (up to 4--5 μm), and laurite (up to 4 μm). The predominant sulfide is heazlewoodite, in intergrowth with Ni--Fe alloys, sporadically with pentlandite, and rarely with pure nickel. Based on the average PGE values and esti- mated Cr-ore resources, the Centralnoye I deposit can be considered as an important resource of PGE.展开更多
CuO was used as a catalyst in the concentrated KOH solution to enhance the leaching of chromium from the chromite ore.The impacts of temperature,KOH-to-chromite ore mass ratio,CuO-to-chromite ore mass ratio,and gas fl...CuO was used as a catalyst in the concentrated KOH solution to enhance the leaching of chromium from the chromite ore.The impacts of temperature,KOH-to-chromite ore mass ratio,CuO-to-chromite ore mass ratio,and gas flow rate on the chromiumleaching rate were investigated.The results indicated that CuO played an important role in improving the chromium leaching rate.The leaching rate reached98%after leaching for6h when CuO was applied,whereas it was only60.8%without CuO under thesame reaction conditions:temperature230°C,KOH-to-ore mass ratio6:1,stirring speed700r/min,gas flow rate1L/min.Accordingto the kinetics study,the catalytic oxidation was controlled by surface chemical reaction and the activation energy was calculated tobe15.79kJ/mol when the temperature was above230°C.In contrast,without CuO,the rate-determining step was external diffusionand the apparent activation energy was38.01kJ/mol.展开更多
基金appreciation to National Natural Science Foundation of China(Nos.52174317,52274337 and U1960203).
文摘To elucidate the formation mechanisms of burn-on sand and metal penetration during sand casting,some laboratory experiments were carried out at different temperatures(1813,1833,1853,and 1873 K)and holding time(20,40,60,and 90 min)to simulate the interaction between ZG13Cr9Mo1VNbN stainless steel and chromite sand.The results demonstrate that the defects primarily consist of a mixture of the liquid phase,chromite,and metal.The main components of the liquid phase are SiO_(2),MnO,MgO,Cr_(2)O_(3),FeO,and Al_(2)O_(3),and the formation of Cr_(2)O_(3)through interfacial redox reactions has been discovered.The presence of a liquid phase plays a pivotal role in influencing burn-on sand and metal penetration.Interface reactions are prioritized,with burn-on sand maintaining a predominant influence.As the liquid phase quantity within the sand escalates,there is a corresponding incremental rise in the incidence of metal penetration.Even a minimal presence of the silicon element in steel can impact the liquid phase’s formation.Moreover,the decomposition or dissolution of chromite sand is a significant factor in the development of burn-on sand and metal penetration.Thus,a thorough investigation into the conditions and contributing factors of this phenomenon is essential for its effective management and mitigation.
文摘Stainless steel,known for its exceptional properties and diverse applications,conventionally requires a multistage process that generates considerable CO_(2) emissions by using fossil-based carbon reductants.This study investigated hydrogen plasma smelting reduction as a novel,sustainable,and efficient method for producing stainless steel directly from lateritic nickel and chromite ores.The research aimed to examine the effect of ore proportion on AISI 300 series stainless steel production and assess the reduction process over time through thermochemical calculations and experimental studies.Results showed that increasing the proportion of chromite ore in the feed raises Cr content and reduces Ni content in metals while increasing Cr_(2)O_(3) and Al_(2)O_(3) content in oxides.A briquette comprising 30wt%chromite ore and 70wt%calcined nickel ore yields better results for AISI 300 stainless steel,with Fe,Cr,Ni,and Si content of 62.95wt%,19.37wt%,11.83wt%,and 0.72wt%,respectively,after 180 s of hydrogen plasma exposure.Nearly all NiO compounds are converted into Ni after 60 s of smelting reduction,whereas FeO compounds are almost fully converted into Fe after 120 s of smelting reduction.AISI 300 series stainless steel is successfully produced after 120 s of reduction,achieving Fe,Cr,Ni,and Si content of 64.36wt%,21.92wt%,10.08wt%,and 0.61wt%,respectively.Process optimization remains promising because the Cr_(2)O_(3) content in the slag is still relatively high at 15.52wt%.This ultrafast and direct production method holds considerable potential to transform stainless steel production by reducing environmental impact and enhancing process efficiency.Specifically,the method eliminates the use of an argon oxygen decarburization converter and vacuum oxygen decarburization in stainless steelmaking.
基金supported by the National Natural Science Foundation of China(No.52274306)Open Fund of State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology),China(No.SYSJJ2020-03).
文摘The enrichment of chromium in the magnetic iron chromite(Fe(Cr_(x)Fe_(1-x))_(2)O_(4))phase is crucial for the recovery and recycling of chromium in stainless-steel pickling sludge.The kinetics and reaction mechanism of the solid-phase reaction between Fe_(3)O_(4)and Cr_(2)O_(3)were investigated using the diffusion couple method at 1473 K.Not only the diffusion behavior of Fe^(2+)ions and Cr^(3+)ions was elucidated,but also the solid solution behavior of Fe^(3+)ions was discussed clearly.The microscopic morphology of the diffusion couple and the change in the concentrations of Fe and Cr cations across the diffusion layers were analyzed using scanning electron microscopy and en-ergy dispersive spectroscopy.The self-diffusion coefficients of cations were calculated based on the concentration profiles of Fe and Cr,with the results indicating that the self-diffusion coefficient of the Fe ions was consistently higher than that of the Cr ions.Additionally,a mixture of Fe_(3)O_(4)and Cr_(2)O_(3)was annealed at 1373-1473 K for 1-5 h,and the kinetic parameters were calculated by studying the phase content of the product.The phase content of Fe(Cr_(x)Fe_(1-x))_(2)O_(4)in the product was determined by Rietveld refinement of X-ray diffraction data,revealing that an activation energy(E)of 177.20 kJ·mol^(-1) and a pre-exponential factor(B)of 610.78 min^(-1)of the solid-phase reac-tion that produced the Fe(Cr_(x)Fe_(1-x))_(2)O_(4)spinel.
基金supported by the National Science Foundation of China(No.41827802)performed at GeoSoilEnviroCARS(Sector 13-ID-D)+3 种基金Advanced Photon Source(APS),Argonne National Laboratory(ANL)supported by the National Science Foundation-Earth Sciences(No.EAR-1634415)the Department of Energy,Geosciences(No.DE-FG02-94ER14466)APS is supported by DOE-BES(No.DE-AC02-06CH11357).
文摘The podiform chromitites in the Luobusha ophiolite have been thought to experience a very deep formation,but the maximum depth is still an open issue.Here,we have investigated the structural stability of natural magnesiochromite using the synchrotron-based powder X-ray diffraction and diamond anvil cells up to 48.6 GPa and 2450 K.The results have shown that spinel-type magnesiochromite first decomposes into corundum-type‘Cr_(2)O_(3)’+B1-type‘MgO’at 11–14 GPa and 1250–1450 K,then modified ludwigite(mLd)-type‘Mg_(2)Cr_(2)O_(5)’+corundum-type‘Cr_(2)O_(3)’at 14.3–20.5 GPa and 1300–2000 K,and finally CaTi_(2)O_(4)-type phase at 24.5 GPa.During the quenching procession from high-temperature-pressure conditions,the mLd-type phase appeared again and was kept at ambient conditions.We also obtained the isothermal equation states of spinel-type and CaTi_(2)O_(4)-type phases,revealing the composition effect on their elasticities.Based on the updated results,we propose chromitites could not experience pressure exceeding∼14.3 GPa(approximate maximum depth∼400 km)in the subduction-recycling genesis model.
基金project by PVSR(no.GAP 538-28[PVSR]),funded by the Department of Science and Technology,Government of India.
文摘The occurrence of rhythmic layering of chromite and host serpentinites in the deformed layered igneous complexes has been noticed in the Nuggihalli schist belt (NSB) in the western Dharwar craton, Karnataka, South India. For this study, the chromitite rock samples were collected from Jambur, Tagadur, Bhakatarhalli, Ranganbetta and Byrapur in the NSB. Petrography and ore microscopic studies on chromite show intense cataclasis and alteration to ferritchromite. The ferritchromite compositions are characterized by higher Cr number (Cr/[Cr+AI]) (0.68-0.98) and lower Mg number (Mg/[Mg+Fe]) (0.33-0.82) ratios in ferritchromite compared to that of parent chromite. The formation process for the ferritchromite is thought to be related to the exchange of Mg, AI, Cr, and Fe between the chromite, surrounding silicates (serpentines, chlorites), and fluid during serpentinization.
基金funded by National Natural Science Foundation of China (Grant No.40930313)the China Geological Survey (Grants No.12120114061801+1 种基金 No.12120114057701 and No.12120114061501)
文摘Listwanite from the Luobusa ophiolite, Tibet, forms a narrow, discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mineral transformation processes and the behaviour of major and trace elements during listwanite formation. Three alteration zones characterized by distinct mineral components and texture are recognized and, in order of increasing degree of alteration, these are: zonem is rich in serpentine minerals; zonen is rich in talc and carbonates; and zone_Ⅰ is mainly composed of carbonates and quartz. Geochemical data for the three alteration zones show significant modification of some major and trace elements in the protolith, although some oxides show linear correlations with MgO. Gold mineralization is recognized in the Luobusa listwanite and may signify an important target for future mineral exploration. Gold enrichment occurs in both zone_Ⅰ and zone_Ⅱ and is up to 0.91 g/t in one sample from zonei. We show that CO_2-rich hydrothermal fluids can modify both the occurrence and composition of chromite grains, indicating some degree of chromite mobility. Low-Cr anhedral grains are more easily altered than high-Cr varieties. The compositions of chromite and olivine grains in the listwanite suggest a dunite protolith.
基金Project(2009FJ1009) supported by the Major Science and Technology Program of Hunan Province,China
文摘To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were studied. The thermodynamics calculation shows that all the standard Gibbs free energy changes of the reactions to form Na2CrO4, Na2O-Fe2O3, Na2O·Al2O3 and Na2O3 SiO2 via chromite ore and Na2CO3 are negative, and the standard Gibbs free energy changes of the reactions between MgO, Fe2O3 and SiO2 released from chromite spinel to form MgO-Fe2O3 and MgO·SiO2 are also negative at the oxidative roasting temperatures (1 173 1 473 K). The phrase analysis of the sinter in lime-free roasting process shows that Na2O·Fe2O3, Na2O·Al2O3 and Na2O·SiO2 can be formed in the first 20 min, but they decrease in contents and finally disappear with the increase of roasting time. The final phase compositions of the sinter are Na2CrO4, MgO·Fe2O3, MgO·SiO2 and MgO. The results indicate that Na2CrO4 can be formed easily via the reaction ofNa2CO3 with chromite ore. Na2O·Fe2O3, Na2O-Al2O3 and Na2O·SiO2 can be formed as intermediate compounds in the roasting process and they can further react with chromite ore to form Na2CrO4. MgO released from chromite ore may react with iron oxides and silicon oxide to form stable compounds of MgO·Fe2O3 and MgO·SiO2, respectively.
基金Project(2009AA06XK1485430) supported by the National Hi-tech Research and Development Program of ChinaProject(2007CB613501) supported by the National Basic Research Program of China
文摘Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.
基金funded by NRCan under the Rare Earth Elements and Chromite R&D Program
文摘Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag component. The experimental results show that the carbonaceous component of the SPL is more reactive towards chromite reduction compared to graphite. The formation of refractory spinel (MgAl2O4) on chromite particles hinders further reduction and alloy growth. The slag-making components of the SPL (e.g. nepheline and NaF) form molten slags at low temperatures (~1300℃) and partly dissolve the refractory spinel as well as the chromite. Destruction of the spinel layer with enhanced mass transfer greatly improves the alloy growth, which can be further promoted by reduction at a higher temperature (e.g. 1500℃). Ferrochrome alloy particles grow large enough at 1500℃ in the presence of SPL, allowing effective separation from the slag component using elutriation separation.
基金Project(2009FJ1009) supported by Major Program of Hunan Provincial Science and Technology, ChinaProject(2005CB6237) supported by the National Basic Research Program of China
文摘Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial waste water containing HF. The results show that HF can effectively destabilize the Cr(VI)-bearing minerals, resulting in the mobilization of Cr(VI) from COPR into the leachate. Particle size significantly influences the leaching of acid-soluble Cr(VI) from COPR, followed by leaching time, whereas the effects of HF concentration and leaching temperature are slight and the influence of stirring rate is negligible. The leaching process of acid-soluble Cr(VI) from COPR is controlled by the diffusion through the product layer. The apparent activation energy is 8.696 kJ/mol and the reaction orders with respect to HF concentration and particle size is 0.493 8 and -2.013 3, respectively.
文摘Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering hehaviour and per- formance of the sands under operative conditions. The effect of particle size distribution on sintering, microstruc- ture, flowability, and permeability were presented. In all cases, the particle size varies from 0.1 to 1.5 mm corre- sponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.
基金financially supported by the National Natural Science Foundation of China (No. 51374059)
文摘The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.
基金Item Sponsored by National Natural Science Foundation of China and Baoshan Iron and Steel Group Co(50474083)
文摘To avoid the nonuniform phenomena of heat and mass transfer of metallurgical powdery materials caused by conventional heating method,the temperature rise characteristics of carbon-containing chromite ore fines in the microwave field were investigated using microwave heating in a microwave metallurgical furnace.The experimental results show that the carbon-containing chromite ore fines have better temperature rise characteristics in the microwave field at a frequency of 2.45 GHz.After heated in the microwave field of 10 kW,the temperature of 1 kg carbon-containing chromite ore fines rose up to 1 100 ℃ in 7 min,at a temperature rise rate of 157.1(℃·min-1·kg-1),whereas the temperature of 1 kg carbon-containing magnetite ore fines rose only up to 1 000 ℃ in 10 min,at a temperature rise rate of 100(℃·min-1·kg-1).With increasing carbon-fitting ratios and by adding calcic lime,their heating effects changed regularly.
基金Supported by National Natural Science Foundation of China (No. 50808091)
文摘In this paper, environmental scanning electron microscopy (ESEM) is applied to characterizing the mineral and element distribution of chromite ore processing residue (COPR). The test results show that Cr-bearing brownmillerite occurs in the rim of COPR particle, while hydroandradite with Cr (Ⅵ) in its structure presents inside the COPR particle. Periclase and calcite occur in the interstitial area. Element analyses show that Ca, Fe and Al are distributed throughout the COPR particle, and Mg exists mostly in the interstitial area or on the particle surface. A lower content of Cr is evenly distributed in the COPR particle, while slightly higher concentration of Cr occurs inside the particle. It is suggested that it will take a relatively longer time for Cr to migrate out of COPR, especially fbr hexavalent chromium, so the leaching time and the particle size may be two important factors to affect the release of Cr (Ⅵ).
基金financially supported by the National Key R&D Program of China (No.2017YFC0805100)the National Natural Science Foundation of China (Nos.51704068 and 51374059)+1 种基金the China Postdoctoral Science Foundation (No.2017M610184)the Postdoctoral Foundation of Northeastern University (No.20170305)
文摘The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg–Al, Mg–Fe, and Mg–Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid–dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg–Al spinel and Mg–Fe spinel because Mg^(2+), Al^(3+), and Fe^(3+) in spinels cannot be oxidized by Cr^(6+). However, in the case of the Mg–Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid–dichromic acid solution was illustrated on the basis of the findings of this study.
文摘The effect of surfactant polyoxyethylenesorbitan monolaurate (Tween-20) on the nickel bioleaching from pre-treated chromite overburden (COB), Sukinda with fungal strain Aspergillus niger, was examined in shake flasks. Along with the nickel recovery from COB by the fungal bioleaching, the effect of surfactant on the growth of the A. niger was also investigated. Results show that the addition of surfactant in low concentration was favorable for the recovery of nickel from pre-treated COB. Normally, the carbon source (sucrose) in the culture medium was utilized by the A. niger for its cellular metabolism and organic metabolites (bio acids) were produced, which were responsible for the bioleaching of minerals. However, the addition of surfactant (Tween-20) accelerated the rate of sucrose consumption by the fungi, and thus enhancing the extraction of nickel from pre-treated COB. During the study, around 39% nickel extraction was achieved in A. niger mediated bioleaching performed at 2% pulp density of pre-treated COB at 30 °C, in the presence of surfactant whereas only 24% nickel was extracted without surfactant.
基金the National Natural Science Foundation of China(No.21836002)the Young Innovative Talents Project in Higher Education of Guangdong(No.2018KQNCX002)+3 种基金Guangdong Innovative and Entrepreneurial Research Team Program(No.2016ZT06N569)the Fundamental Research Funds for the Central Universities(No.D2192000)the Shaoguan Special Fund for Soil Pollution Prevention and Control(No.2017sgtyfz103)the Youth Talent Promotion Project of Guangzhou Science and Technology Association(No.X20200301029)。
文摘The effective extracting Cr(Ⅵ) from chromite ore processing residue(COPR) is the key to achieve COPR detoxification and recovery.We developed an effective method to extract Cr(Ⅵ) from COPR via controlling the phase transformation of Cr(Ⅵ)-containing minerals.Characteristic analysis showed that Cr(Ⅵ) was mainly incorporated in the hydrocalumite(NaCa4Al2O6(SO4/CrO4)1.5-15H2O) in COPR,which was a layered-double hydroxide(LDH) with multilayer structure.In the hydrothermal treatment experiments,the Na2CO3 solution showed significant extraction effect of Cr(Ⅵ) and detoxification effect of COPR.After treatment,95% of Cr(Ⅵ) was removed and the Cr(Ⅵ) concentration in the leachate was decreased to 1.6 mg/L by the toxicity characteristic leaching procedure(TCLP),within the regulatory limit disposal standard(HJ/T 301-2007,3 mg/L).Further study revealed that,during the treatment,hydrocalumite transformed into calcite(CaCO3) under the effect of mineralizer,therefore,the layered structure collapsed and the incorporated Cr(Ⅵ) was released to the supernatant.Meanwhile,the Cr(Ⅵ)desorbed from calcite with the calcite particles grew into large size with smooth surface.Stir-flow experiment revealed that the amount of chromium released from CORP to the environment was significantly reduced after treatment,and it is safer for landfill disposal.This work will provide an instructive guidance for the detoxification and recovery of COPR.
文摘The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the pollution indices.Soil samples(0-20 cm depth) were collected at various distances from the BCM.In the present research,heavy metals(Cr and Ni) in soil samples were analyzed by atomic absorption spectrometry to detect their concentrations and contour maps were produced to explain the metal spatial distribution.Also,the degree of metal pollution was quantified.The results indicate that the soils in the studied area are contaminated by Cr and Ni.The corresponding concentrations for Cr and Ni are(156.19±24.45) and(321.7±133.27) mg/kg,respectively,which exceed the corresponding maximum allowable concentrations in soils.The different indices demonstrate that soils around chromite mine are significantly contaminated with Cr and Ni,suggesting several times higher levels of toxic metals than normal ranges.The above results revealed that the heavy metal concentrations increase with increasing the distance from the mine and mining pollutants can be transported to long distances from their sources.
文摘The Polar Urals region of northern Russia is well known for large chromium (Cr)-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt. New data on platinum (Pt)-group elements (PGE), geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium (Ir) values. These values indicate the predominance of ruthenium--osmium--iridium (Ru--Os--Ir)-bearing phases among the platinum-group mineral (PGM) assemblage that is typical of mantle-hosted chromite ores. Low Pt values in chromites and increased Pt values in host dunites might reflect the presence of cumulus PGM grains. The most abundant PGM found in the chromite is erlichmanite (up to 15 μm). Less common are cuproiridsite (up to 5 μm), irarsite (up to 4--5 μm), and laurite (up to 4 μm). The predominant sulfide is heazlewoodite, in intergrowth with Ni--Fe alloys, sporadically with pentlandite, and rarely with pure nickel. Based on the average PGE values and esti- mated Cr-ore resources, the Centralnoye I deposit can be considered as an important resource of PGE.
基金Project(2013CB632601)supported by the National Basic Research of ChinaProjects(91634111,51404227)supported by the National Natural Science Foundation of China
文摘CuO was used as a catalyst in the concentrated KOH solution to enhance the leaching of chromium from the chromite ore.The impacts of temperature,KOH-to-chromite ore mass ratio,CuO-to-chromite ore mass ratio,and gas flow rate on the chromiumleaching rate were investigated.The results indicated that CuO played an important role in improving the chromium leaching rate.The leaching rate reached98%after leaching for6h when CuO was applied,whereas it was only60.8%without CuO under thesame reaction conditions:temperature230°C,KOH-to-ore mass ratio6:1,stirring speed700r/min,gas flow rate1L/min.Accordingto the kinetics study,the catalytic oxidation was controlled by surface chemical reaction and the activation energy was calculated tobe15.79kJ/mol when the temperature was above230°C.In contrast,without CuO,the rate-determining step was external diffusionand the apparent activation energy was38.01kJ/mol.