The insufficient F(Ⅲ)/Fe(Ⅱ)cycling rate resulted from high combination of photogenerated carriers severely hinders the photo-Fenton activity.In this work,0 dimensionalα-Fe_(2)O_(3)nanoclusters decorated Ti O_(2)het...The insufficient F(Ⅲ)/Fe(Ⅱ)cycling rate resulted from high combination of photogenerated carriers severely hinders the photo-Fenton activity.In this work,0 dimensionalα-Fe_(2)O_(3)nanoclusters decorated Ti O_(2)heterojunction(FT-x)was prepared via in-situ phase transformation strategy.FT-200 exhibited the optimal photo-Fenton activity for 2,4-dichlorophenol degradation with the kinetic rate constant reaching1.0806 min^(-1)under low H_(2)O_(2)dosage(1 mmol/L),which was 126.1 and 202.8 times higher than that of Ti O_(2)andα-Fe_(2)O_(3).Radical quenching experiments and electron spin resonance spectra proved that·OH was the leading reactive specie.The enhanced photo-Fenton activity was attributed to the accelerated F(III)/Fe(II)cycling rate induced by the direct Z-Scheme charge transfer mechanism.Benefiting from the abundant·OH production,the dechlorinate ratios and mineralization ratios of multiple chlorophenol pollutants(2,4-dichlorophenol,4-chlorophenol,2,4,6-trichlorophenol)all exceeded 98%.The biotoxicity of chlorophenol wastewater was greatly reduced after the treatment by Light/H_(2)O_(2)/FT-200 system.Overall,this work constructed a low-cost and highly efficient photo-Fenton system for refractory organic wastewater treatment.展开更多
A hypercrosslinked polymeric adsorbent (ZH-03) for adsorbing and removing chlorophenolic compounds from their aqueous solutions was studied, including the static adsorption. The equilibrium adsorption data were fit ...A hypercrosslinked polymeric adsorbent (ZH-03) for adsorbing and removing chlorophenolic compounds from their aqueous solutions was studied, including the static adsorption. The equilibrium adsorption data were fit to Freundlich adsorption isothermic models to evaluate the model parameters. Thermodynamic studies on the adsorption of chlorophenolic compounds on ZH-03 indicated that there were chemisorption transitions for 2,4,6-trichlorophenol and physical adsorption processes for 2-chlorophenol and 2,6-chlorophenol, and ZH-03 showed the homogeneous nature of the adsorbent surface. Column adsorption for chlorophenols wastewater shows the advantages of the ZH-03 adsorbent for adsorbing the following chlorophenolic compounds as 2-chlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol. Sodium hydroxide was used for desorpting chlorophenols from ZH-03 and showed excellent performance.展开更多
Laboratory studies were conducted to find out the efficacy of uniquely prepared zero valent iron impregnated silica in transforming xenobiotic chlorophenols namely 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlor...Laboratory studies were conducted to find out the efficacy of uniquely prepared zero valent iron impregnated silica in transforming xenobiotic chlorophenols namely 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol. Continuous mode column experiments were performed to investigate the transformation of chlorophenols by varying pH, column height, flow rate and initial chlorophenol concentration. Reusability study of the zero valent iron impregnated silica was studied as well as the morphological changes and the chemical composition of the catalyst medium were also investigated. Dechlorination kinetic studies were conducted and the order of dechlorination of chlorophenols was found to be 2,4,6-trichlorophenol 〉 2,4-dichlorophenol 〉 4-chlorophenol. The optimum pH, column height and flow rate were found to be 7, 20 cm and 0.75 L/hr respectively for all chlorophenols in the reaction duration of 4 hr. Intermediates formed during dechlorination study were identified by gas chromatography-mass spectroscopy analysis. This method was applied to real pulp and paper wastewater and was found satisfactory.展开更多
Individual and combined assessment of risks of adverse effects to aquatic ecosystems of three chlorophenols(CPs),including 2,4dichlorophenol(2,4-DCP),2,4,6-trichlorophenol(2,4,6-TCP) and pentachlorophenol(PCP)...Individual and combined assessment of risks of adverse effects to aquatic ecosystems of three chlorophenols(CPs),including 2,4dichlorophenol(2,4-DCP),2,4,6-trichlorophenol(2,4,6-TCP) and pentachlorophenol(PCP),were conducted.A probabilistic approach based on the concentrations of CPs in surface waters of China was used to determine the likelihood of adverse effects.The potential risk of CPs in surface waters of China was determined to be of concern,especially PCP and mixtures of CPs.The risks of adverse effects were examined as the joint probabilities of exposure and response.The joint probability for PCP was 0.271 in the worst case and 0.111 in the median case,respectively.Based on the cumulative probability,5% of aquatic organisms included in the assessment would be affected 21.36% of the time in the worst case and 5.99% of the time in median case,respectively.For the mixtures of CPs,the joint probability were 0.171 in the worst case and 0.503 in median case,respectively and 5% of species would be affected 49.83% of the time for the worst case and 12.72% in the median case,respectively.Risks of effects of the individual CPs,2,4-DCP and 2,4,6-TCP were deemed to be acceptable with a overlapping probability of 0.1 with 5% of species being affected less than 4% of the time.展开更多
20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the ...20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.展开更多
The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-d0ped diam...The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-d0ped diamond (BDD) thin film electrodes. Current vs time curves under different cell voltages were measured. Removal rate of COD, instant current efficiency (ICE) and energy consumption were investigated under different current densities. The influence of supporting media is reported, which plays an important role in determining the global oxidation rate. The oxidative chloride is stronger than peroxodisulphate. The electrochemical characteristics of boron-doped diamond electrodes were investigated in comparison with active coating Ti substrate anode (ACT). The experimental results show that BDD is markedly superior to ACT due to its different absorption properties.展开更多
A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanica...A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.展开更多
Chlorophenols(CPs)are significant refractory pollutants that are highly toxic to humans and other organ-isms.Reactive electrode membranes(REMs)show considerable potential in the electrochemical removal of refractory p...Chlorophenols(CPs)are significant refractory pollutants that are highly toxic to humans and other organ-isms.Reactive electrode membranes(REMs)show considerable potential in the electrochemical removal of refractory pollutants by allowing flow-through operations with convection-enhanced mass transfer.However,relevant studies are commonly performed on the laboratory scale,and there is no straightfor-ward method that guarantees success in scaling up engineered REM reactors.In this study,we demon-strated that a tubular concentric electrode(TCE)configuration with a titanium suboxide ceramic anode and a stainless-steel cathode is suitable for large-scale CPs removal.Both theoretical and experi-mental results showed that the TCE configuration not only allows the electrode surface to be orthogonal to electric field lines everywhere,but also has an ohmic resistance that is inversely proportional to the length of the electrode.In addition,the TCE configuration can be operated in either the anode-to-cathode(AC)or the cathode-to-anode(CA)mode based on the flow direction,creating adjustable condi-tions for selective degradation of CPs.This was confirmed by 98%removal of 2,4-dichlorophenol(2,4-DCP)and 72.5%removal of chemical oxygen demand(COD)in the CA mode,in which the kinetic constant was one order of magnitude higher than that for the AC mode under flow-through single-pass operations.This can be explained by the lower activation energy and free energy in the CA mode,as revealed by the-oretical calculations and experimental measurements.The TCE configuration is also suitable for a numbering-up strategy to scale up the electrochemical reactor without increasing the ohmic resistance or decreasing the specific electrode area,achieving 99.4%removal of 2,4-DCP with an energy consump-tion of 1.5 kW·h·m^(-3) when three TCE modules were employed.This study presents a suitable electrode design configuration for the REM reactor,offering effective strategies to bridge the“Valley of Death”encountered when scaling up the electrochemical removal of CP pollutants.展开更多
To better understand the interaction mechanisms of plant surfaces with polar organic compounds, sorption of 4-chlorophenol, 2,4- dichlorophenol, and 2,4,6-trichlorophenol by fruit cuticles (i.e., tomato, apple, and p...To better understand the interaction mechanisms of plant surfaces with polar organic compounds, sorption of 4-chlorophenol, 2,4- dichlorophenol, and 2,4,6-trichlorophenol by fruit cuticles (i.e., tomato, apple, and pepper), and potato tuber periderm were investigated. The roles of cuticular components (waxes, cutin, cutan and sugar) on sorption of chlorophenols are quantitatively compared. Cutin and waxes govern the sorption capacity of bulk apple cuticle by hydrophobic interactions. Potato periderm with highest sugar content exhibits the lowest sorption capability for the chlorophenols. With the increase of hydrophobicity (i.e., Kow ) of sorbate, the relative contribution of lipophilic components (wax, cutin and cutan) on total sorption increases, however, the ratios of Koc to Kow decreases due to increasing ionization degree of sorbates.展开更多
Chlorophenols, typically 4-chlorophenols are highly toxic and non-biodegradable organic contaminants which pose serious threat to the environment, particularly when released into aqueous medium. The removal of these p...Chlorophenols, typically 4-chlorophenols are highly toxic and non-biodegradable organic contaminants which pose serious threat to the environment, particularly when released into aqueous medium. The removal of these pollutants by efficient method has received worldwide concern in recent past. A new Fe3O4–Cr2O3 magnetic nanocomposite was synthesized by wet chemical method under ultrasonic irradiation. Microstructure and morphology of the nanocomposite were characterized by powder X-ray diffraction(XRD),Fourier transform infrared(FT-IR), and a transmission electron microscope(TEM). Magnetic and optical properties were studied by a vibrating sample magnetometer(VSM) and an ultraviolet–visible(UV–Vis) spectrophotometer respectively. The magnetic nanocomposite(MNC) was used as photocatalyst for effective decomposition of 4-chlorophenol in water under ultraviolet(UV) irradiation.展开更多
In this paper, a novel magnetic solid-phase extraction method using three-dimensional graphene-based magnetic nanocomposite as adsorbent for the preconcentration of several chlorophenols from water samples prior to hi...In this paper, a novel magnetic solid-phase extraction method using three-dimensional graphene-based magnetic nanocomposite as adsorbent for the preconcentration of several chlorophenols from water samples prior to high-performance liquid chromatography analysis was developed. Various experimental parameters were investigated. Under the optimum conditions, the enrichment factors of the method were in the range of 186–312, and the limit of detection(S/N = 3) was 0.10 ng/mL. The recoveries of the method were in the range between 85.1% and 101.2%. The developed method has been successfully applied to the determination of chlorophenols in environmental water samples.展开更多
A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through th...A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min^-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm^2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m^3/h.展开更多
Ammonia sensors have broad spectrum of applications for industrial process control as well as for environ-mental monitoring. An optical fiber ammonia sensor probe has been developed by using a bent optical fiber havin...Ammonia sensors have broad spectrum of applications for industrial process control as well as for environ-mental monitoring. An optical fiber ammonia sensor probe has been developed by using a bent optical fiber having dual poly(methyl methacrylate) (PMMA)/chlorophenol red (CPR) coatings as a transducer. This sen-sor probe was tested for monitoring trace ammonia in gas samples using air as sample matrix. The reaction of ammonia with CPR causes a color change of the reagent, which was detected by using fiber optic evanes-cent wave absorption spectrometry as a sensing signal. By adopting a dual layer coating structure, the sensor probe has faster response compared to a sensor using a broadly accepted sensing reagent-immobilized poly-mer coating structure. The sensor developed in this work is sensitive, has a detection limit of 2.7 ppb NH3 in air, which is the most sensitive among the reported optical fiber ammonia sensors to the best knowledge of the authors. The sensor is also reversible and has a response time of 25 minutes. The features of high sensi-tivity, reversibility and reasonable response time make this sensor technique very attractive for air quality monitoring.展开更多
Studies on the effect of the chlorine content of chlorophenols (CPs) on their adsorption from aqueous solution by mesoporous SBA-15 are important in understanding the mechanisms of CP adsorption. In this study, thre...Studies on the effect of the chlorine content of chlorophenols (CPs) on their adsorption from aqueous solution by mesoporous SBA-15 are important in understanding the mechanisms of CP adsorption. In this study, three CPs with different degrees of chlorine content (i.e., 2-chlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol) were investigated. The effects of parameters such as temperature and solution pH were studied. The results showed that CP adsorption by SBA- 15 increased with increasing number of chlorine substituents and depended strongly on the temperature and solution pH. Thermodynamic parameters such as Gibbs free energy change (AGO), enthalpy change (△H^0) and entropy change (△S^0) were also calculated. By comparison of the adsorption coefficient of CPs with varying physical-chemical properties (size, hydrophobicity and electron density), we propose that hydrophobic interactions between CPs and the SBA-15 surface, as well as electron donor-acceptor (EDA) complexes between oxygen of the siloxane surface of SBA-15 (e--donor) and the n-system of the CPs (e--acceptor), were dominant adsorption mechanisms.展开更多
A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlo...A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.展开更多
18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical so...18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE). while decrease with the increase of molecular connectivity index (^1X^V), relative molecular mass (Mw) and electronic energy (EE).展开更多
In this work, a metal-organic framework derived nanoporous carbon (MOF-5-C) was fabricated and modified with Fe3O4 magnetic nanoparticles. The resulting magnetic MOF-5-derived porous carbon (Fe304@MOF-5-C) was the...In this work, a metal-organic framework derived nanoporous carbon (MOF-5-C) was fabricated and modified with Fe3O4 magnetic nanoparticles. The resulting magnetic MOF-5-derived porous carbon (Fe304@MOF-5-C) was then used for the magnetic solid-phase extraction of chlorophenols (CPs) from mushroom samples prior to high performance liquid chromatography-ultraviolet detection. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N2 adsorption were used to characterize the adsorbent. After experimental optimization, the amount of the adsorbent was chosen as 8.0 mg, extraction time as 10 min, sample volume as 50 mL, desorption solvent as 0.4 mL (0.2 mL × 2) of alkaline methanol, and sample pH as 6. Under the above optimized conditions, good linearity for the analytes was obtained in the range of 0.8-100.0 ng g 1 with the correlation coefficients between 0.9923 and 0.9963. The limits of detection (SIN= 3) were in the range of 0.25-0.30 ng g-1, and the relative standard deviations were below 6.8%. The result showed that the Fe304@MOF-5-C has an excellent adsorption capacity for the analytes.展开更多
The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI...The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI)/4‐chlorophenol(4‐CP)composite pollution system was further studiedunder different pH conditions.Compared with single‐component photocatalytic systems for Cr(VI)reduction or4‐CP degradation,the Cr(VI)reduction efficiency and4‐CP degradation efficiency weresimultaneously improved in the Cr(VI)/4‐CP composite pollution system.The synergistic photocatalyticeffect in the Cr(VI)/4‐CP composite pollution system can be attributed to the acceleratedredox reaction between dichromate and4‐CP by electron transfer with porous g‐C3N4.展开更多
A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO ...A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFE0100900)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(No.51522805)。
文摘The insufficient F(Ⅲ)/Fe(Ⅱ)cycling rate resulted from high combination of photogenerated carriers severely hinders the photo-Fenton activity.In this work,0 dimensionalα-Fe_(2)O_(3)nanoclusters decorated Ti O_(2)heterojunction(FT-x)was prepared via in-situ phase transformation strategy.FT-200 exhibited the optimal photo-Fenton activity for 2,4-dichlorophenol degradation with the kinetic rate constant reaching1.0806 min^(-1)under low H_(2)O_(2)dosage(1 mmol/L),which was 126.1 and 202.8 times higher than that of Ti O_(2)andα-Fe_(2)O_(3).Radical quenching experiments and electron spin resonance spectra proved that·OH was the leading reactive specie.The enhanced photo-Fenton activity was attributed to the accelerated F(III)/Fe(II)cycling rate induced by the direct Z-Scheme charge transfer mechanism.Benefiting from the abundant·OH production,the dechlorinate ratios and mineralization ratios of multiple chlorophenol pollutants(2,4-dichlorophenol,4-chlorophenol,2,4,6-trichlorophenol)all exceeded 98%.The biotoxicity of chlorophenol wastewater was greatly reduced after the treatment by Light/H_(2)O_(2)/FT-200 system.Overall,this work constructed a low-cost and highly efficient photo-Fenton system for refractory organic wastewater treatment.
基金This work was funded by the Educational Bureau of Jiangsu Province, China (Grant Code 04KJB150153 and 05KJD610250).
文摘A hypercrosslinked polymeric adsorbent (ZH-03) for adsorbing and removing chlorophenolic compounds from their aqueous solutions was studied, including the static adsorption. The equilibrium adsorption data were fit to Freundlich adsorption isothermic models to evaluate the model parameters. Thermodynamic studies on the adsorption of chlorophenolic compounds on ZH-03 indicated that there were chemisorption transitions for 2,4,6-trichlorophenol and physical adsorption processes for 2-chlorophenol and 2,6-chlorophenol, and ZH-03 showed the homogeneous nature of the adsorbent surface. Column adsorption for chlorophenols wastewater shows the advantages of the ZH-03 adsorbent for adsorbing the following chlorophenolic compounds as 2-chlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol. Sodium hydroxide was used for desorpting chlorophenols from ZH-03 and showed excellent performance.
文摘Laboratory studies were conducted to find out the efficacy of uniquely prepared zero valent iron impregnated silica in transforming xenobiotic chlorophenols namely 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol. Continuous mode column experiments were performed to investigate the transformation of chlorophenols by varying pH, column height, flow rate and initial chlorophenol concentration. Reusability study of the zero valent iron impregnated silica was studied as well as the morphological changes and the chemical composition of the catalyst medium were also investigated. Dechlorination kinetic studies were conducted and the order of dechlorination of chlorophenols was found to be 2,4,6-trichlorophenol 〉 2,4-dichlorophenol 〉 4-chlorophenol. The optimum pH, column height and flow rate were found to be 7, 20 cm and 0.75 L/hr respectively for all chlorophenols in the reaction duration of 4 hr. Intermediates formed during dechlorination study were identified by gas chromatography-mass spectroscopy analysis. This method was applied to real pulp and paper wastewater and was found satisfactory.
基金supported by the National Natural Science Foundation of China(No.20737001,20977047)the Major State Basic Research Development Program (No.2008CB418102)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No. 200802841030)the National Major Project of Science & Technology Ministry of China(No.2008ZX08526-003)supported by the Canada Research Chair Program,and is at-large Chair Professor at the Department of Biology and Chemistry and State Key Laboratory in Marine Pollution,City University of Hong Kongthe Einstein Professor Program of the Chinese Academy of Sciences and the Visiting Professor Program of King Saud University
文摘Individual and combined assessment of risks of adverse effects to aquatic ecosystems of three chlorophenols(CPs),including 2,4dichlorophenol(2,4-DCP),2,4,6-trichlorophenol(2,4,6-TCP) and pentachlorophenol(PCP),were conducted.A probabilistic approach based on the concentrations of CPs in surface waters of China was used to determine the likelihood of adverse effects.The potential risk of CPs in surface waters of China was determined to be of concern,especially PCP and mixtures of CPs.The risks of adverse effects were examined as the joint probabilities of exposure and response.The joint probability for PCP was 0.271 in the worst case and 0.111 in the median case,respectively.Based on the cumulative probability,5% of aquatic organisms included in the assessment would be affected 21.36% of the time in the worst case and 5.99% of the time in median case,respectively.For the mixtures of CPs,the joint probability were 0.171 in the worst case and 0.503 in median case,respectively and 5% of species would be affected 49.83% of the time for the worst case and 12.72% in the median case,respectively.Risks of effects of the individual CPs,2,4-DCP and 2,4,6-TCP were deemed to be acceptable with a overlapping probability of 0.1 with 5% of species being affected less than 4% of the time.
基金973 National Basic Research Program of China (2003CB415002)
文摘20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.
基金Project(20113282241450) supported by the Science and Technology Program from Ministry of Transport of China
文摘The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-d0ped diamond (BDD) thin film electrodes. Current vs time curves under different cell voltages were measured. Removal rate of COD, instant current efficiency (ICE) and energy consumption were investigated under different current densities. The influence of supporting media is reported, which plays an important role in determining the global oxidation rate. The oxidative chloride is stronger than peroxodisulphate. The electrochemical characteristics of boron-doped diamond electrodes were investigated in comparison with active coating Ti substrate anode (ACT). The experimental results show that BDD is markedly superior to ACT due to its different absorption properties.
文摘A new cell immobilization method based on the replacement of KCl by KCl+chitosan as the gelling agent was developed. The experimental results showed that through addition of chitosan into gelling agent, the mechanical strength and the thermal stability of the carrageenan gel were greatly improved. The new immobilization method was used to entrap a chlorophenol degrading microorganism. The immobilized microbial cells were applied for chlorophenol biodegradation. The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells.
基金supported by the National Natural Science Foun-dation of China(U21A20161 and 51822806)State Key Laboratory of Urban Water Resource and Environment,China(Harbin Institute of Technology)(2020DX07)Heilongjiang Touyan Innovation Team Program,China(HIT-SE-01).
文摘Chlorophenols(CPs)are significant refractory pollutants that are highly toxic to humans and other organ-isms.Reactive electrode membranes(REMs)show considerable potential in the electrochemical removal of refractory pollutants by allowing flow-through operations with convection-enhanced mass transfer.However,relevant studies are commonly performed on the laboratory scale,and there is no straightfor-ward method that guarantees success in scaling up engineered REM reactors.In this study,we demon-strated that a tubular concentric electrode(TCE)configuration with a titanium suboxide ceramic anode and a stainless-steel cathode is suitable for large-scale CPs removal.Both theoretical and experi-mental results showed that the TCE configuration not only allows the electrode surface to be orthogonal to electric field lines everywhere,but also has an ohmic resistance that is inversely proportional to the length of the electrode.In addition,the TCE configuration can be operated in either the anode-to-cathode(AC)or the cathode-to-anode(CA)mode based on the flow direction,creating adjustable condi-tions for selective degradation of CPs.This was confirmed by 98%removal of 2,4-dichlorophenol(2,4-DCP)and 72.5%removal of chemical oxygen demand(COD)in the CA mode,in which the kinetic constant was one order of magnitude higher than that for the AC mode under flow-through single-pass operations.This can be explained by the lower activation energy and free energy in the CA mode,as revealed by the-oretical calculations and experimental measurements.The TCE configuration is also suitable for a numbering-up strategy to scale up the electrochemical reactor without increasing the ohmic resistance or decreasing the specific electrode area,achieving 99.4%removal of 2,4-DCP with an energy consump-tion of 1.5 kW·h·m^(-3) when three TCE modules were employed.This study presents a suitable electrode design configuration for the REM reactor,offering effective strategies to bridge the“Valley of Death”encountered when scaling up the electrochemical removal of CP pollutants.
基金supported by the National Natural Science Foundation of China (No. 20977081)the Foundation forthe Author of National Excellent Doctoral Dissertation of China (No. 200765)+1 种基金the Zhejiang Provincial Natural Science Foundation of China (No. R5100105)the Doctoral Fund of Ministry of Education of China (No.J20091588)
文摘To better understand the interaction mechanisms of plant surfaces with polar organic compounds, sorption of 4-chlorophenol, 2,4- dichlorophenol, and 2,4,6-trichlorophenol by fruit cuticles (i.e., tomato, apple, and pepper), and potato tuber periderm were investigated. The roles of cuticular components (waxes, cutin, cutan and sugar) on sorption of chlorophenols are quantitatively compared. Cutin and waxes govern the sorption capacity of bulk apple cuticle by hydrophobic interactions. Potato periderm with highest sugar content exhibits the lowest sorption capability for the chlorophenols. With the increase of hydrophobicity (i.e., Kow ) of sorbate, the relative contribution of lipophilic components (wax, cutin and cutan) on total sorption increases, however, the ratios of Koc to Kow decreases due to increasing ionization degree of sorbates.
基金support from Central Instruments Facility and Department of Chemistry of Indian Institute of Technology Guwahati for extending various analytical facilities during the course of investigation
文摘Chlorophenols, typically 4-chlorophenols are highly toxic and non-biodegradable organic contaminants which pose serious threat to the environment, particularly when released into aqueous medium. The removal of these pollutants by efficient method has received worldwide concern in recent past. A new Fe3O4–Cr2O3 magnetic nanocomposite was synthesized by wet chemical method under ultrasonic irradiation. Microstructure and morphology of the nanocomposite were characterized by powder X-ray diffraction(XRD),Fourier transform infrared(FT-IR), and a transmission electron microscope(TEM). Magnetic and optical properties were studied by a vibrating sample magnetometer(VSM) and an ultraviolet–visible(UV–Vis) spectrophotometer respectively. The magnetic nanocomposite(MNC) was used as photocatalyst for effective decomposition of 4-chlorophenol in water under ultraviolet(UV) irradiation.
基金Financial supports from the National Natural Science Foundation of China (No. 31171698)the Scientific and Technological Research Foundation of Department of Education of Hebei Province (No. ZD20131033)the Natural Science Foundations of Hebei (No. B2012204028)
文摘In this paper, a novel magnetic solid-phase extraction method using three-dimensional graphene-based magnetic nanocomposite as adsorbent for the preconcentration of several chlorophenols from water samples prior to high-performance liquid chromatography analysis was developed. Various experimental parameters were investigated. Under the optimum conditions, the enrichment factors of the method were in the range of 186–312, and the limit of detection(S/N = 3) was 0.10 ng/mL. The recoveries of the method were in the range between 85.1% and 101.2%. The developed method has been successfully applied to the determination of chlorophenols in environmental water samples.
基金Project supported partially by the Hi-Tech Research and Devel-opment Program (863) of China (No. 2002AA529182) and the Foundation of Education Ministry of China (No. 98679) andZhejiang Provincial Natural Science Foundation of China (No. 200043)
文摘A novel in-situ electrochemical oxidation method was applied to the degradation of wastewater containing chlorophenol. Under oxygen sparging, the strong oxidant, hydrogen dioxide, could be in-situ generated through the reduction of oxygen on the surface of the cathode. The removal rate ofchlorophenol could be increased 149% when oxygen was induced in the electrochemical cell. The promotion factor was estimated to be about 82.63% according to the pseudo-first-order reaction rate constant (min^-1). Important operating parameters such as current density, sparged oxygen rate were investigated. Higher sparged oxygen rate could improve the degradation of chlorophenol. To make full use of oxygen, however, sparged oxygen rate of 0.05 m3/h was adopted in this work. Oxidation-reduction potential could remarkably affect the generation of hydrogen peroxide. It was found that the removal rate of chlorophenol was not in direct proportion to the applied current density. The optimum current density was 3.5 mA/cm^2 when initial chlorophenol concentration was 100 mg/L and sparged oxygen rate was 0.05 m^3/h.
文摘Ammonia sensors have broad spectrum of applications for industrial process control as well as for environ-mental monitoring. An optical fiber ammonia sensor probe has been developed by using a bent optical fiber having dual poly(methyl methacrylate) (PMMA)/chlorophenol red (CPR) coatings as a transducer. This sen-sor probe was tested for monitoring trace ammonia in gas samples using air as sample matrix. The reaction of ammonia with CPR causes a color change of the reagent, which was detected by using fiber optic evanes-cent wave absorption spectrometry as a sensing signal. By adopting a dual layer coating structure, the sensor probe has faster response compared to a sensor using a broadly accepted sensing reagent-immobilized poly-mer coating structure. The sensor developed in this work is sensitive, has a detection limit of 2.7 ppb NH3 in air, which is the most sensitive among the reported optical fiber ammonia sensors to the best knowledge of the authors. The sensor is also reversible and has a response time of 25 minutes. The features of high sensi-tivity, reversibility and reasonable response time make this sensor technique very attractive for air quality monitoring.
基金supported by the Postdoctoral Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province (No. BK2009294)
文摘Studies on the effect of the chlorine content of chlorophenols (CPs) on their adsorption from aqueous solution by mesoporous SBA-15 are important in understanding the mechanisms of CP adsorption. In this study, three CPs with different degrees of chlorine content (i.e., 2-chlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol) were investigated. The effects of parameters such as temperature and solution pH were studied. The results showed that CP adsorption by SBA- 15 increased with increasing number of chlorine substituents and depended strongly on the temperature and solution pH. Thermodynamic parameters such as Gibbs free energy change (AGO), enthalpy change (△H^0) and entropy change (△S^0) were also calculated. By comparison of the adsorption coefficient of CPs with varying physical-chemical properties (size, hydrophobicity and electron density), we propose that hydrophobic interactions between CPs and the SBA-15 surface, as well as electron donor-acceptor (EDA) complexes between oxygen of the siloxane surface of SBA-15 (e--donor) and the n-system of the CPs (e--acceptor), were dominant adsorption mechanisms.
文摘A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.
基金This work was supported by the National Natural Science Foundation of China (No. 20477034) and the Education Foundation of Hunan Province (No. 04C750).
文摘18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE). while decrease with the increase of molecular connectivity index (^1X^V), relative molecular mass (Mw) and electronic energy (EE).
基金Financial support from the National Natural Science Foundation of China (Nos. 31471643, 31571925)the Innovation Research Program of the Department of Education of Hebei for Hebei Provincial Universities (No. LJRC009)
文摘In this work, a metal-organic framework derived nanoporous carbon (MOF-5-C) was fabricated and modified with Fe3O4 magnetic nanoparticles. The resulting magnetic MOF-5-derived porous carbon (Fe304@MOF-5-C) was then used for the magnetic solid-phase extraction of chlorophenols (CPs) from mushroom samples prior to high performance liquid chromatography-ultraviolet detection. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N2 adsorption were used to characterize the adsorbent. After experimental optimization, the amount of the adsorbent was chosen as 8.0 mg, extraction time as 10 min, sample volume as 50 mL, desorption solvent as 0.4 mL (0.2 mL × 2) of alkaline methanol, and sample pH as 6. Under the above optimized conditions, good linearity for the analytes was obtained in the range of 0.8-100.0 ng g 1 with the correlation coefficients between 0.9923 and 0.9963. The limits of detection (SIN= 3) were in the range of 0.25-0.30 ng g-1, and the relative standard deviations were below 6.8%. The result showed that the Fe304@MOF-5-C has an excellent adsorption capacity for the analytes.
基金supported by the National Natural Science Foundation of China(51568049,51468043,21366024,21665018)the National Science Fund for Excellent Young Scholars(51422807)+2 种基金the Natural Science Foundation of Jiangxi Province,China(20161BAB206118,20171ACB21035)the Distinguished Youth Science Fund of Jiangxi Province(20162BCB23043)the Natural Science Foundation of Jiangxi Provincial Department of Education,China(GJJ14515)~~
文摘The photocatalytic reduction of aqueous Cr(VI)to Cr(III)was preliminarily studied using porousg‐C3N4as a photocatalyst under acidic conditions.The observed synergistic photocatalytic effect ofporous g‐C3N4on a Cr(VI)/4‐chlorophenol(4‐CP)composite pollution system was further studiedunder different pH conditions.Compared with single‐component photocatalytic systems for Cr(VI)reduction or4‐CP degradation,the Cr(VI)reduction efficiency and4‐CP degradation efficiency weresimultaneously improved in the Cr(VI)/4‐CP composite pollution system.The synergistic photocatalyticeffect in the Cr(VI)/4‐CP composite pollution system can be attributed to the acceleratedredox reaction between dichromate and4‐CP by electron transfer with porous g‐C3N4.
基金financially supported by the Education Department of Liaoning Province(No.2009A421)
文摘A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.