NiTi alloy has been widely used as orthopedic implant materials due to its unique shape memory properties and superelasticity.However,implantation failure often occurs because of the poor antibacterial ability,antioxi...NiTi alloy has been widely used as orthopedic implant materials due to its unique shape memory properties and superelasticity.However,implantation failure often occurs because of the poor antibacterial ability,antioxidation property and corrosion resistance of the NiTi alloy.In order to overcome the above problems,we constructed Zn/polydopamine(PDA)/Chitosan-Catechol(CS-C)composite coating on the surface of NiTi alloy in this paper.The surface morphology and wettability of the coating were characterized by scanning electron microscopy(SEM)and optical contact angle measuring instrument,respectively.The results showed that the Zn/CS-C coating was successfully prepared,and exhibited good hydrophilic property,especially the sample Zn/PDA/CS-C-24 h.In addition,the corrosion resistance,antioxidation property and biological properties of the coating were systematically analyzed.The results indicated that the Zn/PDA/CS-C composite coating exhibited good corrosion resistance and antibacterial property,antioxidant property and osteogenic activity,especially sample Zn/PDA/CS-C-24 h.The sample Zn/PDA/CS-C-24 h could effectively protect osteoblasts from reactive oxygen species(ROS)damage and promote cell proliferation and osteoblast differentiation.This study provides a feasible and effective strategy for the surface modification of orthopedic implant.展开更多
Osteoarthritis(OA),a common disabling joint disease,is highly associated with microenvironmental changes in the cartilage and subchondral bone.Elevated reactive oxygen species(ROS)in the cartilage and subchondral bone...Osteoarthritis(OA),a common disabling joint disease,is highly associated with microenvironmental changes in the cartilage and subchondral bone.Elevated reactive oxygen species(ROS)in the cartilage and subchondral bone angiogenesis accelerate articular cartilage erosion.New cartilage-targeting drug deliv-ery systems that are aimed at preventing ROS production and angiogenesis may be of clinical significance for OA treatment.Herein,an ROS scavenger and an inflammatory-responsive nanocarrier are designed by immobilizing the natural polyphenol(curcumin)in chitosan-catechol nanoformulations(Cur-CS-C NPs)via boronate ester.The robust cartilage-targeting effects and ROS scavenging capacities of Cur-CS-C NPs were respectively determined in cartilage explants and chondrocytes.Intra-articular injection of Cur-CS-C NPs in OA rat models efficiently suppressed angiogenesis and cartilage degradation partially via the ROS-mediated NF-κB/PI3K-Akt signaling pathway.The developed curcumin-functionalized nanocarriers can significantly delay OA progression and provide a promising therapeutic strategy for other inflamma-tory diseases that are characterized by oxidative stress and angiogenesis.展开更多
基金jointly supported by the Natural Science Foundation of Shanxi Province(Nos.202203021222127,202403021212109).
文摘NiTi alloy has been widely used as orthopedic implant materials due to its unique shape memory properties and superelasticity.However,implantation failure often occurs because of the poor antibacterial ability,antioxidation property and corrosion resistance of the NiTi alloy.In order to overcome the above problems,we constructed Zn/polydopamine(PDA)/Chitosan-Catechol(CS-C)composite coating on the surface of NiTi alloy in this paper.The surface morphology and wettability of the coating were characterized by scanning electron microscopy(SEM)and optical contact angle measuring instrument,respectively.The results showed that the Zn/CS-C coating was successfully prepared,and exhibited good hydrophilic property,especially the sample Zn/PDA/CS-C-24 h.In addition,the corrosion resistance,antioxidation property and biological properties of the coating were systematically analyzed.The results indicated that the Zn/PDA/CS-C composite coating exhibited good corrosion resistance and antibacterial property,antioxidant property and osteogenic activity,especially sample Zn/PDA/CS-C-24 h.The sample Zn/PDA/CS-C-24 h could effectively protect osteoblasts from reactive oxygen species(ROS)damage and promote cell proliferation and osteoblast differentiation.This study provides a feasible and effective strategy for the surface modification of orthopedic implant.
基金financially supported by the National Natural Science Foundation of China (Nos.11532004 and 11832008)the Innovation and Attracting Talents Program for College and Univer-sity (“111”Project) (No.B06023).
文摘Osteoarthritis(OA),a common disabling joint disease,is highly associated with microenvironmental changes in the cartilage and subchondral bone.Elevated reactive oxygen species(ROS)in the cartilage and subchondral bone angiogenesis accelerate articular cartilage erosion.New cartilage-targeting drug deliv-ery systems that are aimed at preventing ROS production and angiogenesis may be of clinical significance for OA treatment.Herein,an ROS scavenger and an inflammatory-responsive nanocarrier are designed by immobilizing the natural polyphenol(curcumin)in chitosan-catechol nanoformulations(Cur-CS-C NPs)via boronate ester.The robust cartilage-targeting effects and ROS scavenging capacities of Cur-CS-C NPs were respectively determined in cartilage explants and chondrocytes.Intra-articular injection of Cur-CS-C NPs in OA rat models efficiently suppressed angiogenesis and cartilage degradation partially via the ROS-mediated NF-κB/PI3K-Akt signaling pathway.The developed curcumin-functionalized nanocarriers can significantly delay OA progression and provide a promising therapeutic strategy for other inflamma-tory diseases that are characterized by oxidative stress and angiogenesis.