The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two c...The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two commonly used tools are the kernel density estimation and reduced chi-squared statistic used in combination with a weighted mean.Due to the wide applicability of these tools,we present a Java-based computer application called KDX to facilitate the visualization of data and the utilization of these numerical tools.展开更多
In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social developmen...In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social development.Consequently,many domestic universities have introduced majors or courses related to big data.Among these,the Big Data Management and Applications major stands out for its interdisciplinary approach and emphasis on practical skills.However,as an emerging field,it has not yet accumulated a robust foundation in teaching theory and practice.Current instructional practices face issues such as unclear training objectives,inconsistent teaching methods and course content,insufficient integration of practical components,and a shortage of qualified faculty-factors that hinder both the development of the major and the overall quality of education.Taking the statistics course within the Big Data Management and Applications major as an example,this paper examines the challenges faced by statistics education in the context of emerging productive forces and proposes corresponding improvement measures.By introducing innovative teaching concepts and strategies,the teaching system for professional courses is optimized,and authentic classroom scenarios are recreated through illustrative examples.Questionnaire surveys and statistical analyses of data collected before and after the teaching reforms indicate that the curriculum changes effectively enhance instructional outcomes,promote the development of the major,and improve the quality of talent cultivation.展开更多
With the implementation of General Senior High School Mathematics Curriculum Standards(2017 Edition,Revised in 2020),probability and statistics,as important carriers of the core mathematical competencies“mathematical...With the implementation of General Senior High School Mathematics Curriculum Standards(2017 Edition,Revised in 2020),probability and statistics,as important carriers of the core mathematical competencies“mathematical modeling”and“data analysis,”have increasingly highlighted their educational value.By summarizing the historical evolution of probability and statistics thinking and combining with teaching practice cases,this study explores its unique role in cultivating students’core mathematical competencies.The research proposes a project-based teaching strategy relying on real scenarios and empowered by technology.Through cases,it demonstrates how to use modern educational technology to realize the whole-process exploration of data collection,model construction,and conclusion verification,so as to promote the transformation of middle school probability and statistics teaching from knowledge imparting to competency development,and provide a practical reference for curriculum reform.展开更多
This paper focuses on the ideological and political construction of the course“Probability Theory and Mathematical Statistics.”Aiming at the current situation in teaching where emphasis is placed on knowledge impart...This paper focuses on the ideological and political construction of the course“Probability Theory and Mathematical Statistics.”Aiming at the current situation in teaching where emphasis is placed on knowledge imparting while value guidance is neglected,and combined with the requirements of ideological and political education policies in the new era,this paper explores the integration path between professional courses and ideological and political education.Through literature analysis,case comparison,and empirical research,the study proposes a systematic implementation plan covering the design of teaching objectives,the reconstruction of teaching content,and the optimization of the evaluation system.The purpose is to cultivate students’sense of social responsibility and innovative awareness by excavating the ideological and political elements in mathematics.The research results provide practical reference for colleges and universities to deepen the reform of ideological and political education in courses,and promote the implementation of the fundamental task of fostering virtue through education in STEM education.展开更多
A new six-parameter continuous distribution called the Generalized Kumaraswamy Generalized Power Gompertz (GKGPG) distribution is proposed in this study, a graphical illustration of the probability density function an...A new six-parameter continuous distribution called the Generalized Kumaraswamy Generalized Power Gompertz (GKGPG) distribution is proposed in this study, a graphical illustration of the probability density function and cumulative distribution function is presented. The statistical features of the Generalized Kumaraswamy Generalized Power Gompertz distribution are systematically derived and adequately studied. The estimation of the model parameters in the absence of censoring and under-right censoring is performed using the method of maximum likelihood. The test statistic for right-censored data, criteria test for GKGPG distribution, estimated matrix Ŵ, Ĉ, and Ĝ, criteria test Y<sup>2</sup>n</sub>, alongside the quadratic form of the test statistic is derived. Mean simulated values of maximum likelihood estimates and their corresponding square mean errors are presented and confirmed to agree closely with the true parameter values. Simulated levels of significance for Y<sup>2</sup>n</sub> (γ) test for the GKGPG model against their theoretical values were recorded. We conclude that the null hypothesis for which simulated samples are fitted by GKGPG distribution is widely validated for the different levels of significance considered. From the summary of the results of the strength of a specific type of braided cord dataset on the GKGPG model, it is observed that the proposed GKGPG model fits the data set for a significance level ε = 0.05.展开更多
Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-v...Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-valued observations is asymmetric, and its functional form may not be known or easily characterized. In this case, comparisons of the groups in terms of their respective percentiles may be appropriate as these estimates are nonparametric and more robust to outliers and other irregularities. The median test is often used to compare distributions with similar but asymmetric shapes but may be uninformative when there are excess zeros or dissimilar shapes. For zero-inflated distributions, it is useful to compare the distributions with respect to their proportion of zeros, coupled with the comparison of percentile profiles for the observed non-zero values. A simple chi-square test for simultaneous testing of these two components is proposed, applicable to both continuous and discrete data. Results of simulation studies are reported to summarize empirical power under several scenarios. We give recommendations for the minimum sample size which is necessary to achieve suitable test performance in specific examples.展开更多
Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and ideal...Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.展开更多
Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptab...Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptability prediction model. The observations from coastal stations, buoys, altimeters and volunteer ships that cover from 1993 to 2011 were interpolated into miller Ion-lat grids by using bilinear method and the analytical fields of ocean waves were given. By using optimal interpolation, the analysis wave fields were assimilated into the WAVEWATCH III (WW3) simulation results. From the assimilated results, the wave rose statistics, the wave height of muitiyear return period and the extreme 2-D wave spectrum are related to the ship seakeeping were calculated. Finally, the wave statistics in China offshore were analyzed in detail.展开更多
In this paper Singular Decompositon Value (SVD) formula and modified Chi-square solution are provided, and the modified Chi-square is combined with FT-IR instrument to control biochemical reaction process. Using the m...In this paper Singular Decompositon Value (SVD) formula and modified Chi-square solution are provided, and the modified Chi-square is combined with FT-IR instrument to control biochemical reaction process. Using the modified Chi-square technique, the unknown concentration of reactants and products in test samples withdrawn from the process is determined. The technique avoids the need for the spectral data to conform to Beer’s Law and the best spectral range is determined automatically.展开更多
In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, pro...In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, providing a set of technological process to identify the sewage monitoring data, which is convenient and simple.展开更多
With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save inst...With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors' effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.展开更多
The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optima...The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.展开更多
For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide...For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.展开更多
This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to fin...This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.展开更多
The relationship between fractal point pattern modeling and statistical methods of pa- rameter estimation in point-process modeling is reviewed. Statistical estimation of the cluster fractal dimension by using Ripley...The relationship between fractal point pattern modeling and statistical methods of pa- rameter estimation in point-process modeling is reviewed. Statistical estimation of the cluster fractal dimension by using Ripley's K-function has advantages in comparison with the more commonly used methods of box-counting and cluster fractal dimension estimation because it corrects for edge effects, not only for rectangular study areas but also for study areas with curved boundaries determined by re- gional geology. Application of box-counting to estimate the fractal dimension of point patterns has the disadvantage that, in general, it is subject to relatively strong "roll-off" effects for smaller boxes. Point patterns used for example in this paper are mainly for gold deposits in the Abitibi volcanic belt on the Canadian Shield. Additionally, it is proposed that, worldwide, the local point patterns of podiform Cr, volcanogenic massive sulphide and porphyry copper deposits, which are spatially distributed within irregularly shaped favorable tracts, satisfy the fractal clustering model with similar fractal dimensions. The problem of deposit size (metal tonnage) is also considered. Several examples are provided of cases in which the Pareto distribution provides good results for the largest deposits in metal size-frequency distribution modeling.展开更多
This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive ...This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive noise as α-stable distribution, new methods which combine the sparse signal representation technique and fractional lower order statistics theory are proposed. In the new algorithms, the fractional lower order statistics vectors of the array output signal are sparsely represented on an overcomplete basis and the DOAs can be effectively estimated by searching the sparsest coefficients. To enhance the robustness performance of the proposed algorithms,the improved algorithms are advanced by eliminating the fractional lower order statistics of the noise from the fractional lower order statistics vector of the array output through a linear transformation. Simulation results have shown the effectiveness of the proposed methods for a wide range of highly impulsive environments.展开更多
文摘The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two commonly used tools are the kernel density estimation and reduced chi-squared statistic used in combination with a weighted mean.Due to the wide applicability of these tools,we present a Java-based computer application called KDX to facilitate the visualization of data and the utilization of these numerical tools.
文摘In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social development.Consequently,many domestic universities have introduced majors or courses related to big data.Among these,the Big Data Management and Applications major stands out for its interdisciplinary approach and emphasis on practical skills.However,as an emerging field,it has not yet accumulated a robust foundation in teaching theory and practice.Current instructional practices face issues such as unclear training objectives,inconsistent teaching methods and course content,insufficient integration of practical components,and a shortage of qualified faculty-factors that hinder both the development of the major and the overall quality of education.Taking the statistics course within the Big Data Management and Applications major as an example,this paper examines the challenges faced by statistics education in the context of emerging productive forces and proposes corresponding improvement measures.By introducing innovative teaching concepts and strategies,the teaching system for professional courses is optimized,and authentic classroom scenarios are recreated through illustrative examples.Questionnaire surveys and statistical analyses of data collected before and after the teaching reforms indicate that the curriculum changes effectively enhance instructional outcomes,promote the development of the major,and improve the quality of talent cultivation.
基金2021 Annual Research Project of Yili Normal University(2021YSBS012)。
文摘With the implementation of General Senior High School Mathematics Curriculum Standards(2017 Edition,Revised in 2020),probability and statistics,as important carriers of the core mathematical competencies“mathematical modeling”and“data analysis,”have increasingly highlighted their educational value.By summarizing the historical evolution of probability and statistics thinking and combining with teaching practice cases,this study explores its unique role in cultivating students’core mathematical competencies.The research proposes a project-based teaching strategy relying on real scenarios and empowered by technology.Through cases,it demonstrates how to use modern educational technology to realize the whole-process exploration of data collection,model construction,and conclusion verification,so as to promote the transformation of middle school probability and statistics teaching from knowledge imparting to competency development,and provide a practical reference for curriculum reform.
基金Shaanxi Provincial 14th Five-Year Plan for Educational Science Research(SGH24Q481)。
文摘This paper focuses on the ideological and political construction of the course“Probability Theory and Mathematical Statistics.”Aiming at the current situation in teaching where emphasis is placed on knowledge imparting while value guidance is neglected,and combined with the requirements of ideological and political education policies in the new era,this paper explores the integration path between professional courses and ideological and political education.Through literature analysis,case comparison,and empirical research,the study proposes a systematic implementation plan covering the design of teaching objectives,the reconstruction of teaching content,and the optimization of the evaluation system.The purpose is to cultivate students’sense of social responsibility and innovative awareness by excavating the ideological and political elements in mathematics.The research results provide practical reference for colleges and universities to deepen the reform of ideological and political education in courses,and promote the implementation of the fundamental task of fostering virtue through education in STEM education.
文摘A new six-parameter continuous distribution called the Generalized Kumaraswamy Generalized Power Gompertz (GKGPG) distribution is proposed in this study, a graphical illustration of the probability density function and cumulative distribution function is presented. The statistical features of the Generalized Kumaraswamy Generalized Power Gompertz distribution are systematically derived and adequately studied. The estimation of the model parameters in the absence of censoring and under-right censoring is performed using the method of maximum likelihood. The test statistic for right-censored data, criteria test for GKGPG distribution, estimated matrix Ŵ, Ĉ, and Ĝ, criteria test Y<sup>2</sup>n</sub>, alongside the quadratic form of the test statistic is derived. Mean simulated values of maximum likelihood estimates and their corresponding square mean errors are presented and confirmed to agree closely with the true parameter values. Simulated levels of significance for Y<sup>2</sup>n</sub> (γ) test for the GKGPG model against their theoretical values were recorded. We conclude that the null hypothesis for which simulated samples are fitted by GKGPG distribution is widely validated for the different levels of significance considered. From the summary of the results of the strength of a specific type of braided cord dataset on the GKGPG model, it is observed that the proposed GKGPG model fits the data set for a significance level ε = 0.05.
文摘Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-valued observations is asymmetric, and its functional form may not be known or easily characterized. In this case, comparisons of the groups in terms of their respective percentiles may be appropriate as these estimates are nonparametric and more robust to outliers and other irregularities. The median test is often used to compare distributions with similar but asymmetric shapes but may be uninformative when there are excess zeros or dissimilar shapes. For zero-inflated distributions, it is useful to compare the distributions with respect to their proportion of zeros, coupled with the comparison of percentile profiles for the observed non-zero values. A simple chi-square test for simultaneous testing of these two components is proposed, applicable to both continuous and discrete data. Results of simulation studies are reported to summarize empirical power under several scenarios. We give recommendations for the minimum sample size which is necessary to achieve suitable test performance in specific examples.
基金supported by the National Science and Technology Major Project(No.2011 ZX05007-006)the 973 Program of China(No.2013CB228604)the Major Project of Petrochina(No.2014B-0610)
文摘Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
基金supports from National Natural Science Foundation of China (No. 41406032 and No. 41376014)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics (No. SOED1305)
文摘Ocean waves are the core environmental elements affecting the movements and structure design of ships. Statistical analysis of wave parameters is the basis for the establishment of long-term ship environmental adaptability prediction model. The observations from coastal stations, buoys, altimeters and volunteer ships that cover from 1993 to 2011 were interpolated into miller Ion-lat grids by using bilinear method and the analytical fields of ocean waves were given. By using optimal interpolation, the analysis wave fields were assimilated into the WAVEWATCH III (WW3) simulation results. From the assimilated results, the wave rose statistics, the wave height of muitiyear return period and the extreme 2-D wave spectrum are related to the ship seakeeping were calculated. Finally, the wave statistics in China offshore were analyzed in detail.
文摘In this paper Singular Decompositon Value (SVD) formula and modified Chi-square solution are provided, and the modified Chi-square is combined with FT-IR instrument to control biochemical reaction process. Using the modified Chi-square technique, the unknown concentration of reactants and products in test samples withdrawn from the process is determined. The technique avoids the need for the spectral data to conform to Beer’s Law and the best spectral range is determined automatically.
文摘In order to reduce the enormous pressure to environmental monitoring work brought by the false sewage monitoring data, Grubbs method, box plot, t test and other methods are used to make depth analysis to the data, providing a set of technological process to identify the sewage monitoring data, which is convenient and simple.
文摘With the illustration of a specific problem, this paper demonstrates that using Monte Carlo Simulation technology will improve intuitive effect of teaching Probability and Mathematical Statistics course, and save instructors' effort as well.And it is estimated that Monte Carlo Simulation technology will be one of the major teaching methods for Probability and Mathematical Statistics course in the future.
基金supported by the Major Program of National Natural Science Foundation of China (10990012)the National Natural Science Foundation of China (61201296,61271024)+1 种基金the Fundamental Research Funds for the Central Universities (K5051202037)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (12205)
文摘The problem of two order statistics detection schemes for the detection of a spatially distributed target in white Gaussian noise are studied.When the number of strong scattering cells is known,we first show an optimal detector,which requires many processing channels.The structure of such optimal detector is complex.Therefore,a simpler quasi-optimal detector is then introduced.The quasi-optimal detector,called the strong scattering cells’ number dependent order statistics(SND-OS) detector,takes the form of an average of maximum strong scattering cells with a known number.If the number of strong scattering cells is unknown in real situation,the multi-channel order statistics(MC-OS) detector is used.In each channel,a various number of maximums scattered from target are averaged.Then,the false alarm probability analysis and thresholds sets for each channel are given,following the detection results presented by means of Monte Carlo simulation strategy based on simulated target model and three measured targets.In particular,the theoretical analysis and simulation results highlight that the MC-OS detector can efficiently detect range-spread targets in white Gaussian noise.
基金supported by the National Natural Science Foundation of China(6137213661372134+2 种基金61172137)the Fundamental Research Funds for the Central Universities(K5051202005)the China Scholarship Council(CSC)
文摘For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.
文摘This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.
基金supported by Geological Survey of Canada and China University of Geosciences (Wuhan)
文摘The relationship between fractal point pattern modeling and statistical methods of pa- rameter estimation in point-process modeling is reviewed. Statistical estimation of the cluster fractal dimension by using Ripley's K-function has advantages in comparison with the more commonly used methods of box-counting and cluster fractal dimension estimation because it corrects for edge effects, not only for rectangular study areas but also for study areas with curved boundaries determined by re- gional geology. Application of box-counting to estimate the fractal dimension of point patterns has the disadvantage that, in general, it is subject to relatively strong "roll-off" effects for smaller boxes. Point patterns used for example in this paper are mainly for gold deposits in the Abitibi volcanic belt on the Canadian Shield. Additionally, it is proposed that, worldwide, the local point patterns of podiform Cr, volcanogenic massive sulphide and porphyry copper deposits, which are spatially distributed within irregularly shaped favorable tracts, satisfy the fractal clustering model with similar fractal dimensions. The problem of deposit size (metal tonnage) is also considered. Several examples are provided of cases in which the Pareto distribution provides good results for the largest deposits in metal size-frequency distribution modeling.
基金supported in part by the National Natural Science Foundation of China(61301228,61371091)the Fundamental Research Funds for the Central Universities(3132014212)
文摘This paper is mainly to deal with the problem of direction of arrival(DOA) estimations of multiple narrow-band sources impinging on a uniform linear array under impulsive noise environments. By modeling the impulsive noise as α-stable distribution, new methods which combine the sparse signal representation technique and fractional lower order statistics theory are proposed. In the new algorithms, the fractional lower order statistics vectors of the array output signal are sparsely represented on an overcomplete basis and the DOAs can be effectively estimated by searching the sparsest coefficients. To enhance the robustness performance of the proposed algorithms,the improved algorithms are advanced by eliminating the fractional lower order statistics of the noise from the fractional lower order statistics vector of the array output through a linear transformation. Simulation results have shown the effectiveness of the proposed methods for a wide range of highly impulsive environments.