Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial a...Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial and fungal communities,we established a field experiment in a region in Northeast China with Haplic Chernozems using four treatments:conventional tillage(CT,tillage to a depth of 15 cm with no straw incorporation),straw incorporation with conventional tillage(SCT,tillage to a depth of 15 cm),inversion tillage(IT,tillage to a depth of 35 cm)and straw incorporation with inversion tillage(SIT,tillage to a depth of 35 cm).The soils were managed by inversion to a depth of 15 or 35 cm after harvest.The results show that soil organic carbon content was significantly higher and pH and bulk density were significantly lower in the 15–35 cm layer in IT and SIT than CT and SCT.Fungal abundance was higher with straw incorporation,but fungal diversity was lower in the 0–15 cm layer in SCT and SIT than in CT and IT.Path length in the bacterial network was shorter and connectivity was higher in CT+SCT than in IT+SIT,leading to a more complex ecosystem,and the fungal network had opposite patterns.The key taxa in the phylum Actinobacteriota and Ascomycota in the microbial networks changed dramatically at the genus level following inversion tillage with straw amendment,which may increase bacterial network resistance to environmental disturbances and unstable fungal networks,resulting in large changes in the fungal community involved in the decomposition of recalcitrant straw-derived C and the more efficient acquisition of limiting resources.展开更多
The intensive use of petroleum hydrocarbon products has made them priority environmental pollutants.When petroleum hydrocarbons enter the soil,a change in physical,chemical,and biological properties is observed.The na...The intensive use of petroleum hydrocarbon products has made them priority environmental pollutants.When petroleum hydrocarbons enter the soil,a change in physical,chemical,and biological properties is observed.The natural restoration of oil-contaminated soils is a lengthy process;therefore,remediation is often required.The aim of this study is to assess the change in the ecological state of haplic chernozem soil contaminated with oil,fuel oil,and gasoline after remediation.The indicators of soil biological activity,such as phytotoxicity(germination,length of shoots and roots),the activity of oxidoreductase enzymes(catalase and dehydrogenases),and the total number of bacteria were studied.The effects of nitroammophoska fertilizer,sodium humate,biochar,and the biofertilizer“Baikal EM-1”on the ecological state of soils contaminated with oil,fuel oil,and gasoline were studied.Pollution with oil,fuel oil,and gasoline decreased the values of all biological indicators.The most sensitive indicator was the length of radish roots in soils polluted with oil,gasoline,and fuel oil after remediation with nitroammophoska and Baikal EM-1 addition.The length of roots was the most sensitive indicator when remediation was performed with biochar and sodium humate added to soil contaminated with oil and gasoline,and with contamination of haplic chernozem soil with fuel oil,the total number of bacteria was the most sensitive indicator.The most effective ameliorant to phytotoxicity indicators for oil pollution was a 1 D dose of biochar,for fuel oil it was 1 D biochar and 2 D sodium humate,and for gasoline it was a 2 D dose of biochar and Baikal EM-1.All ameliorants at most of the studied doses increased dehydrogenase activity,but increased catalase activity only in some cases.An increase in the total number of bacteria in oil-contaminated soils was promoted by biochar and nitroammophoska at a dose of 2 D.Nitroammophoska was the most effective in ameliorant in soils contaminated with fuel oil;in soils polluted with gasoline,all doses of ameliorant increased the number of bacteria equally.The stimulating effect of ameliorants on biological activity of oil-contaminated haplic chernozem were in the following sequence:nitroammophoska>biochar>sodium humate>Baikal EM-1.The 2 D biochar dose was most effective.The stimulation of biological indicators by ameliorants when soil was contaminated with fuel oil were in the following sequence:biochar>Baikal EM-1>sodium humate>nitroammophoska.The same sequence of ameliorant stimulation was observed in soil polluted with gasoline.The results of this study can be used to biodiagnose the ecological state of oil-contaminated soils after remediation.展开更多
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28070100)the National Key Research and Development Program of China(No.2022YFD1500100)+1 种基金the National Natural Science Foundation of China(No.41807085)the Earmarked Fund for China Agriculture Research System(No.CARS04)。
文摘Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial and fungal communities,we established a field experiment in a region in Northeast China with Haplic Chernozems using four treatments:conventional tillage(CT,tillage to a depth of 15 cm with no straw incorporation),straw incorporation with conventional tillage(SCT,tillage to a depth of 15 cm),inversion tillage(IT,tillage to a depth of 35 cm)and straw incorporation with inversion tillage(SIT,tillage to a depth of 35 cm).The soils were managed by inversion to a depth of 15 or 35 cm after harvest.The results show that soil organic carbon content was significantly higher and pH and bulk density were significantly lower in the 15–35 cm layer in IT and SIT than CT and SCT.Fungal abundance was higher with straw incorporation,but fungal diversity was lower in the 0–15 cm layer in SCT and SIT than in CT and IT.Path length in the bacterial network was shorter and connectivity was higher in CT+SCT than in IT+SIT,leading to a more complex ecosystem,and the fungal network had opposite patterns.The key taxa in the phylum Actinobacteriota and Ascomycota in the microbial networks changed dramatically at the genus level following inversion tillage with straw amendment,which may increase bacterial network resistance to environmental disturbances and unstable fungal networks,resulting in large changes in the fungal community involved in the decomposition of recalcitrant straw-derived C and the more efficient acquisition of limiting resources.
基金The research was carried out with the financial support of the grant of the President(MK-175.2022.5)the laboratory«Soil Health»of the Southern Federal University with the financial support of the Ministry of Science and Higher Education of the Russian Federation(agreement no.075-15-2022-1122)the project of the Ministry of Science and Higher Education of the Russian Federation to support the youth laboratory“Agrobiotechnologies for improving soil fertility and agricultural product quality”within the framework of the development program of the interregional scientific and educational center of the South of Russia(LABNOTS-21-01AB).
文摘The intensive use of petroleum hydrocarbon products has made them priority environmental pollutants.When petroleum hydrocarbons enter the soil,a change in physical,chemical,and biological properties is observed.The natural restoration of oil-contaminated soils is a lengthy process;therefore,remediation is often required.The aim of this study is to assess the change in the ecological state of haplic chernozem soil contaminated with oil,fuel oil,and gasoline after remediation.The indicators of soil biological activity,such as phytotoxicity(germination,length of shoots and roots),the activity of oxidoreductase enzymes(catalase and dehydrogenases),and the total number of bacteria were studied.The effects of nitroammophoska fertilizer,sodium humate,biochar,and the biofertilizer“Baikal EM-1”on the ecological state of soils contaminated with oil,fuel oil,and gasoline were studied.Pollution with oil,fuel oil,and gasoline decreased the values of all biological indicators.The most sensitive indicator was the length of radish roots in soils polluted with oil,gasoline,and fuel oil after remediation with nitroammophoska and Baikal EM-1 addition.The length of roots was the most sensitive indicator when remediation was performed with biochar and sodium humate added to soil contaminated with oil and gasoline,and with contamination of haplic chernozem soil with fuel oil,the total number of bacteria was the most sensitive indicator.The most effective ameliorant to phytotoxicity indicators for oil pollution was a 1 D dose of biochar,for fuel oil it was 1 D biochar and 2 D sodium humate,and for gasoline it was a 2 D dose of biochar and Baikal EM-1.All ameliorants at most of the studied doses increased dehydrogenase activity,but increased catalase activity only in some cases.An increase in the total number of bacteria in oil-contaminated soils was promoted by biochar and nitroammophoska at a dose of 2 D.Nitroammophoska was the most effective in ameliorant in soils contaminated with fuel oil;in soils polluted with gasoline,all doses of ameliorant increased the number of bacteria equally.The stimulating effect of ameliorants on biological activity of oil-contaminated haplic chernozem were in the following sequence:nitroammophoska>biochar>sodium humate>Baikal EM-1.The 2 D biochar dose was most effective.The stimulation of biological indicators by ameliorants when soil was contaminated with fuel oil were in the following sequence:biochar>Baikal EM-1>sodium humate>nitroammophoska.The same sequence of ameliorant stimulation was observed in soil polluted with gasoline.The results of this study can be used to biodiagnose the ecological state of oil-contaminated soils after remediation.