期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Projective spectrum and kernel bundle 被引量:2
1
作者 HE Wei YANG RongWei 《Science China Mathematics》 SCIE CSCD 2015年第11期2363-2372,共10页
For a tuple A = (A1, A2,..., An) of elements in a unital algebra/3 over C, its projective spectrum P(A) or p(A) is the collection of z ∈ Cn, or respectively z ∈ pn-1 such that A(z) = z1A1+z2A2+…+znAn is ... For a tuple A = (A1, A2,..., An) of elements in a unital algebra/3 over C, its projective spectrum P(A) or p(A) is the collection of z ∈ Cn, or respectively z ∈ pn-1 such that A(z) = z1A1+z2A2+…+znAn is not invertible in/3. The first half of this paper proves that if/3 is Banach then the resolvent set PC(A) consists of domains of holomorphy. The second half computes the projective spectrum for the generating vectors of a Clifford algebra. The Chern character of an associated kernel bundle is shown to be nontrivial. 展开更多
关键词 projective spectrum domain of holomorphy Clifford algebra kernel bundle chern character
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部