Recent years have witnessed the transformative impact from the integration of artificial intelligence with organic and polymer synthesis. This synergy offers innovative and intelligent solutions to a range of classic ...Recent years have witnessed the transformative impact from the integration of artificial intelligence with organic and polymer synthesis. This synergy offers innovative and intelligent solutions to a range of classic problems in synthetic chemistry. These exciting advancements include the prediction of molecular property, multi-step retrosynthetic pathway planning, elucidation of the structure-performance relationship of single-step transformation, establishment of the quantitative linkage between polymer structures and their functions, design and optimization of polymerization process, prediction of the structure and sequence of biological macromolecules, as well as automated and intelligent synthesis platforms. Chemists can now explore synthetic chemistry with unprecedented precision and efficiency, creating novel reactions, catalysts, and polymer materials under the datadriven paradigm. Despite these thrilling developments, the field of artificial intelligence(AI) synthetic chemistry is still in its infancy, facing challenges and limitations in terms of data openness, model interpretability, as well as software and hardware support. This review aims to provide an overview of the current progress, key challenges, and future development suggestions in the interdisciplinary field between AI and synthetic chemistry. It is hoped that this overview will offer readers a comprehensive understanding of this emerging field, inspiring and promoting further scientific research and development.展开更多
基金supported by the National Natural Science Foundation of China (22393890, You SL22393891 and 22031006,Luo S+16 种基金2203300, Pei J22371052, Chen M21991132, 21925102,92056118, and 22331003, Zhang WB22331002 and 22125101, Lu H22071004, Mo F22393892 and 22071249, Liao K22122109 and22271253, Hong X)the National Key R&D Program of China(2023YFF1205103, Pei J2020YFA0908100 and 2023YFF1204401, Zhang WB2022YFA1504301, Hong X)Zhejiang Provincial Natural Science Foundation of China (LDQ23B020002, Hong X)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (SNZJU-SIAS-006, Hong X)the CAS Youth Interdisciplinary Team (JCTD-2021-11, Hong X)Shenzhen Medical Research Fund (B2302037, Zhang WB)Beijing National Laboratory for Molecular Sciences (BNLMSCXXM-202006, Zhang WB)the State Key Laboratory of Molecular Engineering of Polymers (Chen M)Haihe Laboratory of Sustainable Chemical Transformations and National Science&Technology Fundamental Resource Investigation Program of China (2023YFA1500008, Luo S)。
文摘Recent years have witnessed the transformative impact from the integration of artificial intelligence with organic and polymer synthesis. This synergy offers innovative and intelligent solutions to a range of classic problems in synthetic chemistry. These exciting advancements include the prediction of molecular property, multi-step retrosynthetic pathway planning, elucidation of the structure-performance relationship of single-step transformation, establishment of the quantitative linkage between polymer structures and their functions, design and optimization of polymerization process, prediction of the structure and sequence of biological macromolecules, as well as automated and intelligent synthesis platforms. Chemists can now explore synthetic chemistry with unprecedented precision and efficiency, creating novel reactions, catalysts, and polymer materials under the datadriven paradigm. Despite these thrilling developments, the field of artificial intelligence(AI) synthetic chemistry is still in its infancy, facing challenges and limitations in terms of data openness, model interpretability, as well as software and hardware support. This review aims to provide an overview of the current progress, key challenges, and future development suggestions in the interdisciplinary field between AI and synthetic chemistry. It is hoped that this overview will offer readers a comprehensive understanding of this emerging field, inspiring and promoting further scientific research and development.