A new perspective was reported to design the self-densified plasma electrolytic oxidation(SDF-PEO)coat-ings on magnesium alloys based on the dissolution-ionization-diffusion-deposition(DIDD)model.The main consideratio...A new perspective was reported to design the self-densified plasma electrolytic oxidation(SDF-PEO)coat-ings on magnesium alloys based on the dissolution-ionization-diffusion-deposition(DIDD)model.The main considerations of the new PEO electrolyte include the establishment of a thermodynamics diagram,the construction of a liquid-solid sintering system and the regulation of plasma sparkling kinetics.The SDF-PEO coating exhibited a homogeneous and dense microstructure,superior corrosion resistance and good technological adaptability.This work offers a novel theory to design surface treatment solutions with superior corrosion resistance and promising application prospects.展开更多
The harsh corrosive environment and sluggish oxygen evolution reaction(OER)kinetics at the anode of proton exchange membrane water electrolysis(PEMWE)cells warrant the use of excess Ir,thereby hindering large-scale in...The harsh corrosive environment and sluggish oxygen evolution reaction(OER)kinetics at the anode of proton exchange membrane water electrolysis(PEMWE)cells warrant the use of excess Ir,thereby hindering large-scale industrialization.To mitigate these issues,the present study aimed at fabricating a robust low-Ir-loading electrode via one-pot synthesis for efficient PEMWE.The pre-electrode was first prepared by alloying through the co-electrodeposition of Ir and Co,followed by the fabrication of Ir–Co oxide(Co-incorporated Ir oxide)electrodes via electrochemical dealloying.Two distinct dealloying techniques resulted in a modified valence state of Ir,and the effects of Co incorporation on the activity and stability of the OER catalysts were clarified using density functional theory(DFT)calculations,which offered theoretical insights into the reaction mechanism.While direct experimental validation of the oxygen evolution mechanism remains challenging under the current conditions,DFT-based theoretical modeling provided valuable perspectives on how Co incorporation could influence key steps in oxygen evolution catalysis.The Ir–Co oxide electrode with a selectively modulated valence state showed impressive performance with an overpotential of 258 mV at 10 mA cm^(−2),a low Tafel slope of 29.4 mV dec^(−1),and stability for 100 h at 100 mA cm^(−2)in the OER,in addition to a low overpotential of 16 mV at−10 mA cm^(−2)and high stability for 24 h in the hydrogen evolution reaction.The PEMWE cell equipped with the bifunctional Ir–Co oxide electrode as the anode and cathode exhibited outstanding performance(11.4 A cm^(−2)at 2.3 Vcell)despite having a low noble-metal content of 0.4 mgNM cm^(−2).展开更多
Efficiently utilizing ammonia(carbon-free fuel)via low-temperature fuel cells is severely hindered by the sluggish kinetics of ammonia oxidation reaction(AOR).Herein,platinum-iridium-tungsten nanocubes(PtIrW-NCBs)with...Efficiently utilizing ammonia(carbon-free fuel)via low-temperature fuel cells is severely hindered by the sluggish kinetics of ammonia oxidation reaction(AOR).Herein,platinum-iridium-tungsten nanocubes(PtIrW-NCBs)with exposed{100}-rich facets were synthesized by a glucose-assisted solvent-thermal method,in which alloying W not only can facilitate the formation of such specific nanostructures to expose more active sites for AOR,but also modulate the electronic structure of PtIr to promote the kinetics of AOR.The PtIrW-NCBs featuring the small nanoparticle size of 5.05±0.07 nm exhibit superior AOR performance,wherein the onset potential is down to 0.319 V and the mass activity is 30.15 A g_((PGM=Pt,Ir))^(-1)at 0.50 V vs.RHE,significantly higher than those of reported majority of AOR catalysts and even commercial PtIr/C.Meanwhile,in situ Fourier transform infrared spectroscopy measurement further reveals that AOR on PtIrW-NCBs dominantly undergoes the dimerization path of NH_(x)(1≤x≤2).In addition,the theoretical calculations also identify that alloying W into PtIr can contribute additional electrons to 5d orbitals of PtIr,enabling the d-band center approaching the Femi level,which in turn induces the high-filling of bonding orbitals of N-N bond in^(*)N_(2)H_(4),promoting the dimerization of^(*)NH_(2)to^(*)N_(2)H_(4)and thus leading to high AOR activity of PtIrW.This work provides new insights for designing efficient AOR electrocatalysts.展开更多
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre...To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating.展开更多
The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time.While electrochemical advanced oxidation processes(EAOPs)and biotreatments are commo...The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time.While electrochemical advanced oxidation processes(EAOPs)and biotreatments are commonly employed technologies for remediating wastewater and polluted soil,their widespread adoption is hindered by their limitations,which include high costs associated with EAOPs and prolonged remediation time of biotreatments.In the review,we provided an overviewof EAOP technology and biotreatment,emphasizing the critical aspects involved in building a combined system.This review systematically evaluates recent research that combines EAOPswith bioremediation for treating wastewater or contaminated soil as pretreatment or post-treatment process.Research findings suggest that the combined treatment method represents a promising and competitive technology that can overcome some of the limitations of individual treatments.Additionally,we discussed the potential applications of this technology in varying levels of wastewater and soil pollution,as well as the underlying combination mechanisms.展开更多
Electrochemically induced surface reconstruction offers a novel approach for in situ modulation of the surface structure of nanomaterials.However,comprehensive studies on the surface reconstruction behavior of nanomat...Electrochemically induced surface reconstruction offers a novel approach for in situ modulation of the surface structure of nanomaterials.However,comprehensive studies on the surface reconstruction behavior of nanomaterials under diverse electrochemical operations remain limited.Here,exemplified by three electrochemical operations,including cyclic voltammetry(CV),squarewave potential(SWP)and chronoamperometry(CA),we reveal the structural evolution behavior and the corresponding electrocatalytic activity of bimetallic telluride hollow nanorods(Ir_(1-x)Ru_(x)0Te_(2)HNRs).It was found that the surface Te atoms in Ir_(1-x)Ru_(x)0Te_(2)HNRs undergo preferential leaching during the CV and SWP processes,ultimately leading to the formation of a metal alloy shell.In contrast,during the CA process,the surface reconstruction induced by Te leaching was suppressed by the adsorption of anions on the electrode surface.Electrocatalytic tests show that the CV activated Ir_(0.75)Ru_(0.25)Te_(2)HNRs exhibit excellent activity for the hydrogen oxidation reaction in 0.1 M KOH,with a mass activity of 686 Ag^(-1)at an overpotential of50 mV,which is 2.9 times higher than that of commercialPt/C catalyst.Density functional theory(DFT)computation reveals that the incorporation of Ru optimizes the hydroxyl binding energy of IrRu alloy,thus resulting in the reduced reaction energy barrier of hydrogen oxidation reaction.This work provides a new insight into the design of efficient catalysts through electrochemical surface engineering.展开更多
In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Par...In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Particularly in chemical engineering and materials science,ML can be used to discover microstructural composition,optimize chemical processes,and create novel synthetic pathways.Electrochemical processes offer the advantages of precise process control,environmental friendliness,high energy conversion efficiency and low cost.This review article provides the first systematic summary of ML in the application of electrochemical oxidation,including pollutant removal,battery remediation,substance synthesis and material characterization prediction.Hot trends at the intersection of ML and electrochemical oxidation were analyzed through bibliometrics.Common ML models were outlined.The role of ML in improving removal efficiency,optimizing experimental conditions,aiding battery diagnosis and predictive maintenance,and revealing material characterization was highlighted.In addition,current issues and future perspectives were presented in relation to the strengths and weaknesses of ML algorithms applied to electrochemical oxidation.In order to further support the sustainable growth of electrochemistry from basic research to useful applications,this review attempts to make it easier to integrate ML into electrochemical oxidation.展开更多
Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient cat...Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.展开更多
Photoelectrochemistry is a promising method for the direct conversion of sunlight into valuable chemicals by combining the functions of solar panels and electrolyzers in one technology.In most studies,semiconductor/ca...Photoelectrochemistry is a promising method for the direct conversion of sunlight into valuable chemicals by combining the functions of solar panels and electrolyzers in one technology.In most studies,semiconductor/catalyst photoelectrode assemblies are used to achieve reasonable efficiencies.At the same time,unlike in dark electrochemical processes,the role of the catalyst is not straightforward in photoelectrochemistry,where the onset potential of the redox process should be mostly determined by the flatband potential of the semiconductor.In addition,the energy of holes(i.e.,the surface potential)is independent of the applied bias;it is defined by the valence band(VB)position.In this study,we compared PdAu,Au,and Ni on Si photoanodes in the photoelectrochemical(PEC)oxidation of glycerol at record high current densities(>180 mA cm^(‒2)),coupled to H_(2) evolution at the cathode.We successfully decreased the energy requirement(i.e.,the cell voltage)of the paired conversion of glycerol and water by 0.7 V by exchanging the widely studied Ni catalyst with PdAu.The catalyst choice also dictates the product distribution,resulting mainly in C3 products on PdAu,glycolate(C2 product)on Au,and formate(C1 product)on Ni,without complete mineralization of glycerol(CO_(2) formation)that is difficult to rule out in dark electrochemical processes(as demonstrated by comparative measurements).Finally,we achieved a bias‐free(standalone)operation with PdAu/Si and Au/Si photoanodes by combining the PEC oxidation of glycerol with oxygen reduction reaction(ORR).展开更多
Electrochemical oxidation of 5-hydroxymethylfurfural(HMFOR),featuring favorable thermodynamics,presents a promising alternative to the conventional oxygen evolution reaction for energy-saving hydrogen(H_(2))production...Electrochemical oxidation of 5-hydroxymethylfurfural(HMFOR),featuring favorable thermodynamics,presents a promising alternative to the conventional oxygen evolution reaction for energy-saving hydrogen(H_(2))production coupled with biomass upgrading.However,the multiple proton-coupled electron transfer steps in HMFOR result in sluggish kinetics,highlighting the development of highly efficient electrocatalysts.Herein,a high-entropy amorphous MoCrCoNiZn-S grown on nickel foam(HEAS@NF)is constructed via a metal organic framework-derived strategy to efficiently convert HMF to 2,5-furandicarboxylic acid(FDCA).The abundant active sites on the HEAS@NF facilitate the structural evolution to oxyhydroxides that possess strong reducibility for HMF dehydrogenation,leading to superior HMFOR performance compared to sulfides with fewer metal elements.In situ electrochemical impedance spectroscopy results confirm significantly favored kinetics to HMFOR over OER on the HEAS@NF,resulting in a remarkable98%HMF conversion,with FDCA yield and Faradaic efficiency of 98%and 94%even at a concentrated 100 mM HMF.A two-electrode flow electrolyzer equipped with the bifunctional HEAS@NF enables simultaneous cathodic H2and anodic FDCA production with an electricity saving of 10.8%.This study presents an effective strategy to inspire the exploration of high-entropy catalysts for biomass-assisted H2production.展开更多
A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical pro...A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical processes related to surface corrosion and catalyst degradation have not been well understood so far.In this study,we employ LiCoO_(2) as a model catalyst and observe distinct OER activities and surface stabilities in different alkaline solutions.Operando X-ray diffraction(XRD)and online mass spectroscopy(OMS)measurements prove the selective intercalation of alkali cations into the layered structure of LiCoO_(2) during OER.It is proposed that the dynamic cation intercalations facilitate the chemical oxidation process between highly oxidative Co species and adsorbed water molecules,triggering the so-called electrochemical-chemical reaction mechanism(EC-mechanism).The results of this study emphasize the influence of cations on OER and provide insights into new strategies for achieving both high activity and stability in high-performance OER catalysts.展开更多
Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more ...Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more difficult than to O_(2)via a 4e^(-)pathway.Herein,with a series of BiVO_(4)-based photoanodes,the decisive factors determining the PEC activity and selectivity are elucidated,combining a comprehensive experimental and theoretical investigations.It is discovered that the ZnO/BiVO_(4)photoanode(ZnO/BVO)forms a Type-Ⅱheterojunction in energy level alignment.The accelerated photogenerated charge separation/transfer dynamics generates denser surface holes and higher surface photovoltage.Therefore,the activity of water oxidation reaction is promoted.The selectivity of PEC-WO to H_(2)O_(2)is found to be potential-dependent,i.e.,at the lower potentials(PEC-dominated),surface hole density determines the selectivity;and at the higher potentials(electrochemical-dominated),surface reaction barriers govern the selectivity.For the ZnO/BVO heterojunction photoanode,the higher surface hole density facilitates the generation of OH·and the subsequent OH·/OH·coupling to form H_(2)O_(2),thus rising up with potentials;at the higher potentials,the 2-electron pathway barrier over ZnO/BVO surface is lower than over BVO surface,which benefits from the electronic structure regulation by the underlying ZnO alleviating the over-strong adsorption of^(*)OH on BVO,thus,the two-electron pathway to produce H_(2)O_(2)is more favored than on BVO surface.This work highlights the crucial role of band energy structure of semiconductors on both PEC reaction activity and selectivity,and the knowledge gained is expected to be extended to other photoeletrochemical reactions.展开更多
Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,...Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors.展开更多
Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches m...Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches may be ineffective for systems with strong localized chemical effects,as fragmenting specific substructures into simpler chemical bonds can introduce additional errors instead of mitigating them.To address this issue,we propose the Substructure-Preserved Connection-Based Hierarchy(SCBH),a method that automatically identifies and freezes substructures with significant local chemical effects prior to molecular fragmentation.The SCBH is validated by the gas-phase enthalpy of formation calculation of CHNO molecules.Therein,based on the atomization scheme,the reference and test values are derived at the levels of Gaussian-4(G4)and M062X/6-31+G(2df,p),respectively.Compared to commonly used approaches,SCBH reduces the average computational error by half and requires only15%of the computational cost of G4 to achieve comparable accuracy.Since different types of local effect structures have differentiated influences on gas-phase enthalpy of formation,substituents with strong electronic effects should be retained preferentially.SCBH can be readily extended to diverse classes of organic compounds.Its workflow and source code allow flexible customization of molecular moieties,including azide,carboxyl,trinitromethyl,phenyl,and others.This strategy facilitates accurate,rapid,and automated computations and corrections,making it well-suited for high-throughput molecular screening and dataset construction for gas-phase enthalpy of formation.展开更多
Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat micr...Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat microplastic waste and CO_(2)by using environmentally friendly and efficient technologies.In this work,we developed an efficient photoelectrocatalytic system composed of Ni single atoms(Ni SAs)supported by P,N-doped amorphous NiFe_(2)O_(4)(Ni SAs/A-P-N-NFO)as anode and Ag nanoparticles(Ag NPs)supported by CuO/Cu_(2)O nanocubes(Ag NPs@CuO/Cu_(2)O NCs)as cathode for microplastic oxidation and CO_(2)reduction.The Ni SAs/A-P-N-NFO was synthesized by calcination-H_(2)reduction method,and it achieved a Faraday efficiency of 93%for the oxidation reaction of poly(ethylene terephthalate)(PET)solution under AM 1.5 G light.As a photocathode,the synthesized Ag NPs@CuO/Cu_(2)O NCs was utilized to reduce CO_(2)to ethylene and CO at 1.5 V vs.RHE with selectivity of 42%and 55%,respectively.This work shows that the photoelectrocatalysis,as an environmentally friendly technology,is a feasible strategy for reducing the environmental and biological hazards of light plastics,as well as for efficient CO_(2)reduction.展开更多
Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl m...Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions.展开更多
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti...In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms.展开更多
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti...TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.展开更多
Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and l...Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs.展开更多
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been...Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.展开更多
基金supported by the National Natural Sci-ence Foundation of China(Nos.U21A2045 and 52201066)the Liaoning Revitalization Talents Program(No.XLYC2002071).
文摘A new perspective was reported to design the self-densified plasma electrolytic oxidation(SDF-PEO)coat-ings on magnesium alloys based on the dissolution-ionization-diffusion-deposition(DIDD)model.The main considerations of the new PEO electrolyte include the establishment of a thermodynamics diagram,the construction of a liquid-solid sintering system and the regulation of plasma sparkling kinetics.The SDF-PEO coating exhibited a homogeneous and dense microstructure,superior corrosion resistance and good technological adaptability.This work offers a novel theory to design surface treatment solutions with superior corrosion resistance and promising application prospects.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00340074,RS-2024-00409901,2022M3I3A1081901,and RS-2024-00413272)。
文摘The harsh corrosive environment and sluggish oxygen evolution reaction(OER)kinetics at the anode of proton exchange membrane water electrolysis(PEMWE)cells warrant the use of excess Ir,thereby hindering large-scale industrialization.To mitigate these issues,the present study aimed at fabricating a robust low-Ir-loading electrode via one-pot synthesis for efficient PEMWE.The pre-electrode was first prepared by alloying through the co-electrodeposition of Ir and Co,followed by the fabrication of Ir–Co oxide(Co-incorporated Ir oxide)electrodes via electrochemical dealloying.Two distinct dealloying techniques resulted in a modified valence state of Ir,and the effects of Co incorporation on the activity and stability of the OER catalysts were clarified using density functional theory(DFT)calculations,which offered theoretical insights into the reaction mechanism.While direct experimental validation of the oxygen evolution mechanism remains challenging under the current conditions,DFT-based theoretical modeling provided valuable perspectives on how Co incorporation could influence key steps in oxygen evolution catalysis.The Ir–Co oxide electrode with a selectively modulated valence state showed impressive performance with an overpotential of 258 mV at 10 mA cm^(−2),a low Tafel slope of 29.4 mV dec^(−1),and stability for 100 h at 100 mA cm^(−2)in the OER,in addition to a low overpotential of 16 mV at−10 mA cm^(−2)and high stability for 24 h in the hydrogen evolution reaction.The PEMWE cell equipped with the bifunctional Ir–Co oxide electrode as the anode and cathode exhibited outstanding performance(11.4 A cm^(−2)at 2.3 Vcell)despite having a low noble-metal content of 0.4 mgNM cm^(−2).
基金supported by the National Natural Science Foundation of China(22379031)the Guangxi Science and Technology Project of China(AB16380030)+1 种基金the National Research Foundation,SingaporeA*STAR(Agency for Science,Technology and Research)under its LCER Phase 2 Programme Hydrogen&Emerging Technologies FI,Directed Hydrogen Programme(U2305D4003)。
文摘Efficiently utilizing ammonia(carbon-free fuel)via low-temperature fuel cells is severely hindered by the sluggish kinetics of ammonia oxidation reaction(AOR).Herein,platinum-iridium-tungsten nanocubes(PtIrW-NCBs)with exposed{100}-rich facets were synthesized by a glucose-assisted solvent-thermal method,in which alloying W not only can facilitate the formation of such specific nanostructures to expose more active sites for AOR,but also modulate the electronic structure of PtIr to promote the kinetics of AOR.The PtIrW-NCBs featuring the small nanoparticle size of 5.05±0.07 nm exhibit superior AOR performance,wherein the onset potential is down to 0.319 V and the mass activity is 30.15 A g_((PGM=Pt,Ir))^(-1)at 0.50 V vs.RHE,significantly higher than those of reported majority of AOR catalysts and even commercial PtIr/C.Meanwhile,in situ Fourier transform infrared spectroscopy measurement further reveals that AOR on PtIrW-NCBs dominantly undergoes the dimerization path of NH_(x)(1≤x≤2).In addition,the theoretical calculations also identify that alloying W into PtIr can contribute additional electrons to 5d orbitals of PtIr,enabling the d-band center approaching the Femi level,which in turn induces the high-filling of bonding orbitals of N-N bond in^(*)N_(2)H_(4),promoting the dimerization of^(*)NH_(2)to^(*)N_(2)H_(4)and thus leading to high AOR activity of PtIrW.This work provides new insights for designing efficient AOR electrocatalysts.
基金National Natural Science Foundation of China(52071274)Key Research and Development Projects of Shaanxi Province(2023-YBGY-442)Science and Technology Nova Project-Innovative Talent Promotion Program of Shaanxi Province(2020KJXX-062)。
文摘To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating.
基金supported by the National Natural Science Foundation of China(No.51709103)the Natural Science Foundation of Hunan Province,China(Nos.2018JJ3242 and 2021JJ30362)the Science and Technology Innovation Leading Plan of High Tech Industry in Hunan Province(No.2021GK4055).
文摘The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time.While electrochemical advanced oxidation processes(EAOPs)and biotreatments are commonly employed technologies for remediating wastewater and polluted soil,their widespread adoption is hindered by their limitations,which include high costs associated with EAOPs and prolonged remediation time of biotreatments.In the review,we provided an overviewof EAOP technology and biotreatment,emphasizing the critical aspects involved in building a combined system.This review systematically evaluates recent research that combines EAOPswith bioremediation for treating wastewater or contaminated soil as pretreatment or post-treatment process.Research findings suggest that the combined treatment method represents a promising and competitive technology that can overcome some of the limitations of individual treatments.Additionally,we discussed the potential applications of this technology in varying levels of wastewater and soil pollution,as well as the underlying combination mechanisms.
基金financially supported by the National Natural Science Foundation of China(Nos.22205196 and U1904215)the Natural Science Foundation of Jiangsu Province(No.BK20210790)the start-up fundings from Yangzhou University
文摘Electrochemically induced surface reconstruction offers a novel approach for in situ modulation of the surface structure of nanomaterials.However,comprehensive studies on the surface reconstruction behavior of nanomaterials under diverse electrochemical operations remain limited.Here,exemplified by three electrochemical operations,including cyclic voltammetry(CV),squarewave potential(SWP)and chronoamperometry(CA),we reveal the structural evolution behavior and the corresponding electrocatalytic activity of bimetallic telluride hollow nanorods(Ir_(1-x)Ru_(x)0Te_(2)HNRs).It was found that the surface Te atoms in Ir_(1-x)Ru_(x)0Te_(2)HNRs undergo preferential leaching during the CV and SWP processes,ultimately leading to the formation of a metal alloy shell.In contrast,during the CA process,the surface reconstruction induced by Te leaching was suppressed by the adsorption of anions on the electrode surface.Electrocatalytic tests show that the CV activated Ir_(0.75)Ru_(0.25)Te_(2)HNRs exhibit excellent activity for the hydrogen oxidation reaction in 0.1 M KOH,with a mass activity of 686 Ag^(-1)at an overpotential of50 mV,which is 2.9 times higher than that of commercialPt/C catalyst.Density functional theory(DFT)computation reveals that the incorporation of Ru optimizes the hydroxyl binding energy of IrRu alloy,thus resulting in the reduced reaction energy barrier of hydrogen oxidation reaction.This work provides a new insight into the design of efficient catalysts through electrochemical surface engineering.
基金funding from the National Natural Science Foundation of China(Nos.22122606,22076142,62276190)National Key Basic Research Program of China(No.2017YFA0403402)+2 种基金National Natural Science Foundation of China(No.U1932119)the Science&Technology Commission of Shanghai Municipality(No.14DZ2261100)the Fundamental Research Funds for the Central Universities。
文摘In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Particularly in chemical engineering and materials science,ML can be used to discover microstructural composition,optimize chemical processes,and create novel synthetic pathways.Electrochemical processes offer the advantages of precise process control,environmental friendliness,high energy conversion efficiency and low cost.This review article provides the first systematic summary of ML in the application of electrochemical oxidation,including pollutant removal,battery remediation,substance synthesis and material characterization prediction.Hot trends at the intersection of ML and electrochemical oxidation were analyzed through bibliometrics.Common ML models were outlined.The role of ML in improving removal efficiency,optimizing experimental conditions,aiding battery diagnosis and predictive maintenance,and revealing material characterization was highlighted.In addition,current issues and future perspectives were presented in relation to the strengths and weaknesses of ML algorithms applied to electrochemical oxidation.In order to further support the sustainable growth of electrochemistry from basic research to useful applications,this review attempts to make it easier to integrate ML into electrochemical oxidation.
基金National Natural Science Foundation of China,Grant/Award Number:22179029Fundamental Research Funds for the Central Universities,Grant/Award Number:buctrc202324+2 种基金Young Elite Scientists Sponsorship Program by BAST,Grant/Award Number:BYESS2023093Ministero dell'Istruzione,dell'Universitàe della Ricerca,Grant/Award Number:2022FNL89YKempestiftelserna。
文摘Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.
基金funding under the European Union's Horizon Europe research and innovation program from the European Research Council(ERC,Grant Agreement No.101043617)(C.J.).Project No.RRF‐2.3.1‐21‐2022‐00009titled National Laboratory for Renewable Energy,was implemented with the support provided by the Recovery and Resilience Facility of the European Union within the framework of the Program Széchenyi Plan Plus(C.J.)support from MICIU/AEI/10.13039/501100011033/(PID2020-116093RB−C41 and PID2023‐152771OB‐I00).European Innovation Council(EIC)(101071010).
文摘Photoelectrochemistry is a promising method for the direct conversion of sunlight into valuable chemicals by combining the functions of solar panels and electrolyzers in one technology.In most studies,semiconductor/catalyst photoelectrode assemblies are used to achieve reasonable efficiencies.At the same time,unlike in dark electrochemical processes,the role of the catalyst is not straightforward in photoelectrochemistry,where the onset potential of the redox process should be mostly determined by the flatband potential of the semiconductor.In addition,the energy of holes(i.e.,the surface potential)is independent of the applied bias;it is defined by the valence band(VB)position.In this study,we compared PdAu,Au,and Ni on Si photoanodes in the photoelectrochemical(PEC)oxidation of glycerol at record high current densities(>180 mA cm^(‒2)),coupled to H_(2) evolution at the cathode.We successfully decreased the energy requirement(i.e.,the cell voltage)of the paired conversion of glycerol and water by 0.7 V by exchanging the widely studied Ni catalyst with PdAu.The catalyst choice also dictates the product distribution,resulting mainly in C3 products on PdAu,glycolate(C2 product)on Au,and formate(C1 product)on Ni,without complete mineralization of glycerol(CO_(2) formation)that is difficult to rule out in dark electrochemical processes(as demonstrated by comparative measurements).Finally,we achieved a bias‐free(standalone)operation with PdAu/Si and Au/Si photoanodes by combining the PEC oxidation of glycerol with oxygen reduction reaction(ORR).
基金financially supported by the National Natural Science Foundation of China(No.22275138 and 22271219)
文摘Electrochemical oxidation of 5-hydroxymethylfurfural(HMFOR),featuring favorable thermodynamics,presents a promising alternative to the conventional oxygen evolution reaction for energy-saving hydrogen(H_(2))production coupled with biomass upgrading.However,the multiple proton-coupled electron transfer steps in HMFOR result in sluggish kinetics,highlighting the development of highly efficient electrocatalysts.Herein,a high-entropy amorphous MoCrCoNiZn-S grown on nickel foam(HEAS@NF)is constructed via a metal organic framework-derived strategy to efficiently convert HMF to 2,5-furandicarboxylic acid(FDCA).The abundant active sites on the HEAS@NF facilitate the structural evolution to oxyhydroxides that possess strong reducibility for HMF dehydrogenation,leading to superior HMFOR performance compared to sulfides with fewer metal elements.In situ electrochemical impedance spectroscopy results confirm significantly favored kinetics to HMFOR over OER on the HEAS@NF,resulting in a remarkable98%HMF conversion,with FDCA yield and Faradaic efficiency of 98%and 94%even at a concentrated 100 mM HMF.A two-electrode flow electrolyzer equipped with the bifunctional HEAS@NF enables simultaneous cathodic H2and anodic FDCA production with an electricity saving of 10.8%.This study presents an effective strategy to inspire the exploration of high-entropy catalysts for biomass-assisted H2production.
基金financially supported by the Shenzhen Science and Technology Innovation Program(Grant No.JCYJ20220530150011024)。
文摘A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical processes related to surface corrosion and catalyst degradation have not been well understood so far.In this study,we employ LiCoO_(2) as a model catalyst and observe distinct OER activities and surface stabilities in different alkaline solutions.Operando X-ray diffraction(XRD)and online mass spectroscopy(OMS)measurements prove the selective intercalation of alkali cations into the layered structure of LiCoO_(2) during OER.It is proposed that the dynamic cation intercalations facilitate the chemical oxidation process between highly oxidative Co species and adsorbed water molecules,triggering the so-called electrochemical-chemical reaction mechanism(EC-mechanism).The results of this study emphasize the influence of cations on OER and provide insights into new strategies for achieving both high activity and stability in high-performance OER catalysts.
基金financially supported by the National Natural Science Foundation of China(22478211,22179067,22372017)the Major Fundamental Research Program of Natural Science Foundation of Shandong Province(ZR2022ZD10)。
文摘Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more difficult than to O_(2)via a 4e^(-)pathway.Herein,with a series of BiVO_(4)-based photoanodes,the decisive factors determining the PEC activity and selectivity are elucidated,combining a comprehensive experimental and theoretical investigations.It is discovered that the ZnO/BiVO_(4)photoanode(ZnO/BVO)forms a Type-Ⅱheterojunction in energy level alignment.The accelerated photogenerated charge separation/transfer dynamics generates denser surface holes and higher surface photovoltage.Therefore,the activity of water oxidation reaction is promoted.The selectivity of PEC-WO to H_(2)O_(2)is found to be potential-dependent,i.e.,at the lower potentials(PEC-dominated),surface hole density determines the selectivity;and at the higher potentials(electrochemical-dominated),surface reaction barriers govern the selectivity.For the ZnO/BVO heterojunction photoanode,the higher surface hole density facilitates the generation of OH·and the subsequent OH·/OH·coupling to form H_(2)O_(2),thus rising up with potentials;at the higher potentials,the 2-electron pathway barrier over ZnO/BVO surface is lower than over BVO surface,which benefits from the electronic structure regulation by the underlying ZnO alleviating the over-strong adsorption of^(*)OH on BVO,thus,the two-electron pathway to produce H_(2)O_(2)is more favored than on BVO surface.This work highlights the crucial role of band energy structure of semiconductors on both PEC reaction activity and selectivity,and the knowledge gained is expected to be extended to other photoeletrochemical reactions.
基金supported by the National Key Research and Development Program of China(2024YFA1612900)the National Natural Science Foundation of China(Grant No.52103365 and No.12375270)the Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2021ZT09L227).
文摘Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors.
基金the support of the National Natural Science Foundation of China(22575230)。
文摘Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches may be ineffective for systems with strong localized chemical effects,as fragmenting specific substructures into simpler chemical bonds can introduce additional errors instead of mitigating them.To address this issue,we propose the Substructure-Preserved Connection-Based Hierarchy(SCBH),a method that automatically identifies and freezes substructures with significant local chemical effects prior to molecular fragmentation.The SCBH is validated by the gas-phase enthalpy of formation calculation of CHNO molecules.Therein,based on the atomization scheme,the reference and test values are derived at the levels of Gaussian-4(G4)and M062X/6-31+G(2df,p),respectively.Compared to commonly used approaches,SCBH reduces the average computational error by half and requires only15%of the computational cost of G4 to achieve comparable accuracy.Since different types of local effect structures have differentiated influences on gas-phase enthalpy of formation,substituents with strong electronic effects should be retained preferentially.SCBH can be readily extended to diverse classes of organic compounds.Its workflow and source code allow flexible customization of molecular moieties,including azide,carboxyl,trinitromethyl,phenyl,and others.This strategy facilitates accurate,rapid,and automated computations and corrections,making it well-suited for high-throughput molecular screening and dataset construction for gas-phase enthalpy of formation.
文摘Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat microplastic waste and CO_(2)by using environmentally friendly and efficient technologies.In this work,we developed an efficient photoelectrocatalytic system composed of Ni single atoms(Ni SAs)supported by P,N-doped amorphous NiFe_(2)O_(4)(Ni SAs/A-P-N-NFO)as anode and Ag nanoparticles(Ag NPs)supported by CuO/Cu_(2)O nanocubes(Ag NPs@CuO/Cu_(2)O NCs)as cathode for microplastic oxidation and CO_(2)reduction.The Ni SAs/A-P-N-NFO was synthesized by calcination-H_(2)reduction method,and it achieved a Faraday efficiency of 93%for the oxidation reaction of poly(ethylene terephthalate)(PET)solution under AM 1.5 G light.As a photocathode,the synthesized Ag NPs@CuO/Cu_(2)O NCs was utilized to reduce CO_(2)to ethylene and CO at 1.5 V vs.RHE with selectivity of 42%and 55%,respectively.This work shows that the photoelectrocatalysis,as an environmentally friendly technology,is a feasible strategy for reducing the environmental and biological hazards of light plastics,as well as for efficient CO_(2)reduction.
基金sponsored by the Department of Defense,Defense Threat Reduction Agency under the Materials Science in Extreme Environments University Research Alliance,HDTRA1-20-2-0001。
文摘Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions.
基金supported by the National Natural Science Foundation of China(Nos.42477406 and 51878617)the Horizontal Scientific Research Project(No.KYY-HX-20220803)the Engineering Research Center of Ministry of Education for Renewable Energy Infrastructure Construction Technology.
文摘In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms.
基金supported by the Original Exploratory Program of the National Natural Science Foundation of China(No.52450012)。
文摘TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.
基金supported by the Yunnan Fundamental Research Projects(Grant Nos.202401AU070163 and 202501AT070298)the Yunnan Engineering Research Center Innovation Ability Construction and Enhancement Projects(Grant No.2023-XMDJ-00617107)+5 种基金the University Service Key Industry Project of Yunnan Province(Grant No.FWCY-ZD2024005)the Expert Workstation Support Project of Yunnan Province(Grant No.202405AF140069)the Scientific Research Foundation of Kunming University of Science and Technology(Grant No.20220122)the Analysis and Test Foundation of Kunming University of Science and Technology(Grant No.2023T20220122)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN02057)the Ordos City Strategic Pioneering Science and Technology Special Program for New Energy(Grant No.DC2400003365).
文摘Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs.
基金supported by The University of Hong Kong,China(109000487,109001694,204610401,and 204610519)National Natural Science Foundation of China(82402225)(to JH).
文摘Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke.In recent years,the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation.This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer’s disease,Parkinson’s disease,multiple sclerosis,and Huntington’s disease.A comprehensive literature search was conducted using databases such as PubMed and Google Scholar,focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications.The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism,which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases.Although promising results have been observed in selected clinical and preclinical trials,further validations are needed to evaluate their clinical value.When combined with other imaging modalities and advanced analytical methods,chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker,enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.