The harsh corrosive environment and sluggish oxygen evolution reaction(OER)kinetics at the anode of proton exchange membrane water electrolysis(PEMWE)cells warrant the use of excess Ir,thereby hindering large-scale in...The harsh corrosive environment and sluggish oxygen evolution reaction(OER)kinetics at the anode of proton exchange membrane water electrolysis(PEMWE)cells warrant the use of excess Ir,thereby hindering large-scale industrialization.To mitigate these issues,the present study aimed at fabricating a robust low-Ir-loading electrode via one-pot synthesis for efficient PEMWE.The pre-electrode was first prepared by alloying through the co-electrodeposition of Ir and Co,followed by the fabrication of Ir–Co oxide(Co-incorporated Ir oxide)electrodes via electrochemical dealloying.Two distinct dealloying techniques resulted in a modified valence state of Ir,and the effects of Co incorporation on the activity and stability of the OER catalysts were clarified using density functional theory(DFT)calculations,which offered theoretical insights into the reaction mechanism.While direct experimental validation of the oxygen evolution mechanism remains challenging under the current conditions,DFT-based theoretical modeling provided valuable perspectives on how Co incorporation could influence key steps in oxygen evolution catalysis.The Ir–Co oxide electrode with a selectively modulated valence state showed impressive performance with an overpotential of 258 mV at 10 mA cm^(−2),a low Tafel slope of 29.4 mV dec^(−1),and stability for 100 h at 100 mA cm^(−2)in the OER,in addition to a low overpotential of 16 mV at−10 mA cm^(−2)and high stability for 24 h in the hydrogen evolution reaction.The PEMWE cell equipped with the bifunctional Ir–Co oxide electrode as the anode and cathode exhibited outstanding performance(11.4 A cm^(−2)at 2.3 Vcell)despite having a low noble-metal content of 0.4 mgNM cm^(−2).展开更多
Efficiently utilizing ammonia(carbon-free fuel)via low-temperature fuel cells is severely hindered by the sluggish kinetics of ammonia oxidation reaction(AOR).Herein,platinum-iridium-tungsten nanocubes(PtIrW-NCBs)with...Efficiently utilizing ammonia(carbon-free fuel)via low-temperature fuel cells is severely hindered by the sluggish kinetics of ammonia oxidation reaction(AOR).Herein,platinum-iridium-tungsten nanocubes(PtIrW-NCBs)with exposed{100}-rich facets were synthesized by a glucose-assisted solvent-thermal method,in which alloying W not only can facilitate the formation of such specific nanostructures to expose more active sites for AOR,but also modulate the electronic structure of PtIr to promote the kinetics of AOR.The PtIrW-NCBs featuring the small nanoparticle size of 5.05±0.07 nm exhibit superior AOR performance,wherein the onset potential is down to 0.319 V and the mass activity is 30.15 A g_((PGM=Pt,Ir))^(-1)at 0.50 V vs.RHE,significantly higher than those of reported majority of AOR catalysts and even commercial PtIr/C.Meanwhile,in situ Fourier transform infrared spectroscopy measurement further reveals that AOR on PtIrW-NCBs dominantly undergoes the dimerization path of NH_(x)(1≤x≤2).In addition,the theoretical calculations also identify that alloying W into PtIr can contribute additional electrons to 5d orbitals of PtIr,enabling the d-band center approaching the Femi level,which in turn induces the high-filling of bonding orbitals of N-N bond in^(*)N_(2)H_(4),promoting the dimerization of^(*)NH_(2)to^(*)N_(2)H_(4)and thus leading to high AOR activity of PtIrW.This work provides new insights for designing efficient AOR electrocatalysts.展开更多
The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time.While electrochemical advanced oxidation processes(EAOPs)and biotreatments are commo...The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time.While electrochemical advanced oxidation processes(EAOPs)and biotreatments are commonly employed technologies for remediating wastewater and polluted soil,their widespread adoption is hindered by their limitations,which include high costs associated with EAOPs and prolonged remediation time of biotreatments.In the review,we provided an overviewof EAOP technology and biotreatment,emphasizing the critical aspects involved in building a combined system.This review systematically evaluates recent research that combines EAOPswith bioremediation for treating wastewater or contaminated soil as pretreatment or post-treatment process.Research findings suggest that the combined treatment method represents a promising and competitive technology that can overcome some of the limitations of individual treatments.Additionally,we discussed the potential applications of this technology in varying levels of wastewater and soil pollution,as well as the underlying combination mechanisms.展开更多
In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Par...In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Particularly in chemical engineering and materials science,ML can be used to discover microstructural composition,optimize chemical processes,and create novel synthetic pathways.Electrochemical processes offer the advantages of precise process control,environmental friendliness,high energy conversion efficiency and low cost.This review article provides the first systematic summary of ML in the application of electrochemical oxidation,including pollutant removal,battery remediation,substance synthesis and material characterization prediction.Hot trends at the intersection of ML and electrochemical oxidation were analyzed through bibliometrics.Common ML models were outlined.The role of ML in improving removal efficiency,optimizing experimental conditions,aiding battery diagnosis and predictive maintenance,and revealing material characterization was highlighted.In addition,current issues and future perspectives were presented in relation to the strengths and weaknesses of ML algorithms applied to electrochemical oxidation.In order to further support the sustainable growth of electrochemistry from basic research to useful applications,this review attempts to make it easier to integrate ML into electrochemical oxidation.展开更多
Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient cat...Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.展开更多
A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical pro...A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical processes related to surface corrosion and catalyst degradation have not been well understood so far.In this study,we employ LiCoO_(2) as a model catalyst and observe distinct OER activities and surface stabilities in different alkaline solutions.Operando X-ray diffraction(XRD)and online mass spectroscopy(OMS)measurements prove the selective intercalation of alkali cations into the layered structure of LiCoO_(2) during OER.It is proposed that the dynamic cation intercalations facilitate the chemical oxidation process between highly oxidative Co species and adsorbed water molecules,triggering the so-called electrochemical-chemical reaction mechanism(EC-mechanism).The results of this study emphasize the influence of cations on OER and provide insights into new strategies for achieving both high activity and stability in high-performance OER catalysts.展开更多
Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more ...Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more difficult than to O_(2)via a 4e^(-)pathway.Herein,with a series of BiVO_(4)-based photoanodes,the decisive factors determining the PEC activity and selectivity are elucidated,combining a comprehensive experimental and theoretical investigations.It is discovered that the ZnO/BiVO_(4)photoanode(ZnO/BVO)forms a Type-Ⅱheterojunction in energy level alignment.The accelerated photogenerated charge separation/transfer dynamics generates denser surface holes and higher surface photovoltage.Therefore,the activity of water oxidation reaction is promoted.The selectivity of PEC-WO to H_(2)O_(2)is found to be potential-dependent,i.e.,at the lower potentials(PEC-dominated),surface hole density determines the selectivity;and at the higher potentials(electrochemical-dominated),surface reaction barriers govern the selectivity.For the ZnO/BVO heterojunction photoanode,the higher surface hole density facilitates the generation of OH·and the subsequent OH·/OH·coupling to form H_(2)O_(2),thus rising up with potentials;at the higher potentials,the 2-electron pathway barrier over ZnO/BVO surface is lower than over BVO surface,which benefits from the electronic structure regulation by the underlying ZnO alleviating the over-strong adsorption of^(*)OH on BVO,thus,the two-electron pathway to produce H_(2)O_(2)is more favored than on BVO surface.This work highlights the crucial role of band energy structure of semiconductors on both PEC reaction activity and selectivity,and the knowledge gained is expected to be extended to other photoeletrochemical reactions.展开更多
Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat micr...Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat microplastic waste and CO_(2)by using environmentally friendly and efficient technologies.In this work,we developed an efficient photoelectrocatalytic system composed of Ni single atoms(Ni SAs)supported by P,N-doped amorphous NiFe_(2)O_(4)(Ni SAs/A-P-N-NFO)as anode and Ag nanoparticles(Ag NPs)supported by CuO/Cu_(2)O nanocubes(Ag NPs@CuO/Cu_(2)O NCs)as cathode for microplastic oxidation and CO_(2)reduction.The Ni SAs/A-P-N-NFO was synthesized by calcination-H_(2)reduction method,and it achieved a Faraday efficiency of 93%for the oxidation reaction of poly(ethylene terephthalate)(PET)solution under AM 1.5 G light.As a photocathode,the synthesized Ag NPs@CuO/Cu_(2)O NCs was utilized to reduce CO_(2)to ethylene and CO at 1.5 V vs.RHE with selectivity of 42%and 55%,respectively.This work shows that the photoelectrocatalysis,as an environmentally friendly technology,is a feasible strategy for reducing the environmental and biological hazards of light plastics,as well as for efficient CO_(2)reduction.展开更多
Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water ...Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water to oxygen,particularly with readily available and inexpensive electrolyte solutions such as seawater.While metal oxide materials have demonstrated their advantages in promoting efficiency by reducing overpotential and improving light utilization,stability remains limited by corrosion in multicomponent seawater.In this paper,we reviewed the relationship between four basic concepts including photoelectrochemistry,metal oxide,water oxidation and seawater to better understand the challenges and opportunities in photoelectrochemical(PEC)seawater oxidation.To overcome these challenges,the advances in material design,interfacial modification,local environment control and reactor design have been further reviewed to benefit the industrial PEC seawater oxidation.Noticeably,we demonstrate engineered layered metal oxide electrodes and cell structures that enable powerful and stable seawater oxidation.We also outline and advise on the future direction in this area.展开更多
Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile me...Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.展开更多
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),...BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),weak photogenerated charge separation efficiency(Φ_(Sep)),and low water oxidation efficiency(Φ_(OX)).Herein,we tackle these challenges of the BiVO_(4)photoanodes using systematic engineering,including catalysis engineering,bandgap engineering,and morphology engineering.In particular,we deposit a NiCoO_(x)layer onto the BiVO_(4)photoanode as the oxygen evolution catalyst to enhance theΦ_(OX)of Fe‐g‐C_(3)N_(4)/BiVO_(4)for PEC water oxidation,and incorporate Fe‐doped graphite‐phase C_(3)N_(4)(Fe‐g‐C_(3)N_(4))into the BiVO_(4)photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm,increase the LHE andΦ_(Sep),and further improve the oxygen evolution reaction activity of the NiCoO_(x)catalytic layer.Consequently,the maximum photocurrent density of the as‐prepared NiCoO_(x)/Fe‐g‐C_(3)N_(4)/BiVO_(4)is remarkably boosted from 4.6 to 7.4 mA cm^(−2).This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE,Φ_(Sep),andΦ_(OX)of BiVO_(4)‐based photoanodes,which will substantially benefit the design,preparation,and large‐scale application of next‐generation high‐performance photoanodes.展开更多
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran...The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production.展开更多
Identification of chemical oxygen demand(COD)in municipal solid waste(MSW)landfill leachates is a challenging problem.This paper investigated the feasibility of using sodium persulfate(PS),a strong oxidant,as a permea...Identification of chemical oxygen demand(COD)in municipal solid waste(MSW)landfill leachates is a challenging problem.This paper investigated the feasibility of using sodium persulfate(PS),a strong oxidant,as a permeable reactive barrier(PRB)filling material.Firstly,sustained-release persulfate balls were manufactured to adjust the release rate of persulfate,the oxidation agent.In addition,Fe(II)-loaded activated carbon(Fe-AC)was used to help with an even distribution of Fe(II)in the porous medium(PRB in this case).Then,the oxidation efficiency and kinetic rate of COD removal by the sustained-release balls were subjected to batch tests.A mass ratio of 1:1.4:0.24:0.7 for PS:cement:sand:water was the most efficient for COD removal(95%).The breakthrough curve for a 5 mm sustained-release ball revealed that the retardation factor was 1.27 and that the hydrodynamic dispersion coefficient was 15.6 cm^(2)/d.The corresponding half-life of COD oxidation was 0.43 d,which was comparable with the half-life of PS release from sustained-release balls(0.56 d).The sustained-release persulfate balls were shown to be an economical material with a simple recipe and production method when catalyzed by Fe-AC.Compared with cutting-edge methods,sustained-release balls used in PRBs offer significant advantages in terms of both effectiveness and economy for the preparation of sustained-release and catalytic materials.These results verified the feasibility of using sustained-release persulfate balls as a PRB material for COD removal.展开更多
Silver(9 wt.%)was loaded on Co_(3)O_(4)-nanofiber using reduction and impregnation methods,respectively.Due to the stronger electronegativity of silver,the ratios of surface Co^(3+)/Co^(2+) on Ag/Co_(3)O_(4) were high...Silver(9 wt.%)was loaded on Co_(3)O_(4)-nanofiber using reduction and impregnation methods,respectively.Due to the stronger electronegativity of silver,the ratios of surface Co^(3+)/Co^(2+) on Ag/Co_(3)O_(4) were higher than on Co_(3)O_(4),which further led to more adsorbed oxygen species as a result of the charge compensation.Moreover,the introducing of silver also obviously improved the reducibility of Co_(3)O_(4).Hence the Ag/Co_(3)O_(4) showed better catalytic performance than Co_(3)O_(4) in benzene oxidation.Compared with the Ag/Co_(3)O_(4) synthesized via impregnation method,the one prepared using reduction method(named as Ag Co-R)exhibited higher contents of surface Co^(3+) and adsorbed oxygen species,stronger reducibility,as well as more active surface lattice oxygen species.Consequently,Ag Co-R showed lowest T_(90) value of 183℃,admirable catalytic stability,largest normalized reaction rate of1.36×10^(-4)mol/(h·m^(2))(150℃),and lowest apparent activation energy(E_(a))of 63.2 kJ/mol.The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol,o-benzoquinone,small molecular intermediates,and finally to CO_(2) and water on the surface of Ag Co-R.At last,potential reaction pathways including five detailed steps were proposed.展开更多
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
Design of electrode materials for stable and efficient electrocatalytic oxidation of As(Ⅲ)in arsenic-contaminated groundwater poses a great challenge due to the rapid deactivation of catalysts resulting from the high...Design of electrode materials for stable and efficient electrocatalytic oxidation of As(Ⅲ)in arsenic-contaminated groundwater poses a great challenge due to the rapid deactivation of catalysts resulting from the high oxygen evolution potential(OEP)and considerable barrier to generating reactive oxygen species(ROS).Herein,an innovative TNAs/SnO_(2)/PEDOT/Fe(Ⅲ)-RuO_(2) multilayer electrode was synthesized by utilizing a PEDOT-coated SnO_(2) interlayer as a supportive framework to combine Fe-doped amorphous RuO_(2) catalytic layer with TiO_(2) nanotube array substrate.Such electrode exhibited high activity and sta-bility for the oxidation of As(Ⅲ)to As(V)due to the large surface area provided by the TiO_(2) nanotube arrays and the SnO_(2)/PEDOT interlayer for facilitating the growth of the catalytic layer.The electrochem-ically active surface area of the electrode reached as high as 31.7 mF/cm^(2).Impressively,the doping of Fe into RuO_(2) layer led to a remarkable increase in the OEP value to 3.12 V,which boosted the indirect oxidation process mediated by ROS at a lower potential to achieve the As(Ⅲ)oxidation ratio of 98.5%.DFT calculations revealed that the Fe-doped amorphous RuO_(2) weakened the adsorption strength of·OH and.SO4-intermediates and lowered the energy barrier for generating ROS.Combined with ESR results,the formation of·OH and·SC4-with strong oxidizing properties was fully verified,providing further evi-dence for the involvement of ROS as the main mediator of the oxidation mechanism of As(Ⅲ).This work may provide valuable perspectives into the design of catalytic layer structures and heteroatom doping modifications for composite-coated electrodes.展开更多
Biomass electrooxidation has garnered much attention in recent years,owing to its potential to circumvent greenhouse gas emissions.Substituting the sluggish water oxidation with biomass oxidizable species such as lign...Biomass electrooxidation has garnered much attention in recent years,owing to its potential to circumvent greenhouse gas emissions.Substituting the sluggish water oxidation with biomass oxidizable species such as lignin at anode is thermodynamically more favorable,enabling energy efficient hydrogen production and concomitant fine chemicals.The present study shows the organosolv lignin electrooxidation in an additively manufactured 3D printed reactor(3DPR)consisting of platinized nickel foam(PtNF)as anode and cathode and compared with commercial hardware electrolyzer(CHE).The electrolysis of organosolv lignin in 3DPR outperformed CHE by achieving 1.23 times higher current at an applied voltage range from 0 to 2.2 V with a membrane(Nafion 115)interposed between anode and cathode under a continuous flow of lignin feed at the anode.The chronoamperometry study reveals a mixture of diverse aromatic compounds,including vanillic acid,syringic acid,3,5-dimethoxy-4-hydroxyacetophenone,2-hydroxyacetophenone,4-ethycathecol,and 2,6-dimethoxyphenol in anolyte,and sinapic acid and vanillin acetate in catholyte.Thus,realizing renewable biomass electrolysis in the 3DPR is an intriguing strategy for the co-production of hydrogen and fine aromatic chemicals.展开更多
Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capac...Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.展开更多
With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical c...With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00340074,RS-2024-00409901,2022M3I3A1081901,and RS-2024-00413272)。
文摘The harsh corrosive environment and sluggish oxygen evolution reaction(OER)kinetics at the anode of proton exchange membrane water electrolysis(PEMWE)cells warrant the use of excess Ir,thereby hindering large-scale industrialization.To mitigate these issues,the present study aimed at fabricating a robust low-Ir-loading electrode via one-pot synthesis for efficient PEMWE.The pre-electrode was first prepared by alloying through the co-electrodeposition of Ir and Co,followed by the fabrication of Ir–Co oxide(Co-incorporated Ir oxide)electrodes via electrochemical dealloying.Two distinct dealloying techniques resulted in a modified valence state of Ir,and the effects of Co incorporation on the activity and stability of the OER catalysts were clarified using density functional theory(DFT)calculations,which offered theoretical insights into the reaction mechanism.While direct experimental validation of the oxygen evolution mechanism remains challenging under the current conditions,DFT-based theoretical modeling provided valuable perspectives on how Co incorporation could influence key steps in oxygen evolution catalysis.The Ir–Co oxide electrode with a selectively modulated valence state showed impressive performance with an overpotential of 258 mV at 10 mA cm^(−2),a low Tafel slope of 29.4 mV dec^(−1),and stability for 100 h at 100 mA cm^(−2)in the OER,in addition to a low overpotential of 16 mV at−10 mA cm^(−2)and high stability for 24 h in the hydrogen evolution reaction.The PEMWE cell equipped with the bifunctional Ir–Co oxide electrode as the anode and cathode exhibited outstanding performance(11.4 A cm^(−2)at 2.3 Vcell)despite having a low noble-metal content of 0.4 mgNM cm^(−2).
基金supported by the National Natural Science Foundation of China(22379031)the Guangxi Science and Technology Project of China(AB16380030)+1 种基金the National Research Foundation,SingaporeA*STAR(Agency for Science,Technology and Research)under its LCER Phase 2 Programme Hydrogen&Emerging Technologies FI,Directed Hydrogen Programme(U2305D4003)。
文摘Efficiently utilizing ammonia(carbon-free fuel)via low-temperature fuel cells is severely hindered by the sluggish kinetics of ammonia oxidation reaction(AOR).Herein,platinum-iridium-tungsten nanocubes(PtIrW-NCBs)with exposed{100}-rich facets were synthesized by a glucose-assisted solvent-thermal method,in which alloying W not only can facilitate the formation of such specific nanostructures to expose more active sites for AOR,but also modulate the electronic structure of PtIr to promote the kinetics of AOR.The PtIrW-NCBs featuring the small nanoparticle size of 5.05±0.07 nm exhibit superior AOR performance,wherein the onset potential is down to 0.319 V and the mass activity is 30.15 A g_((PGM=Pt,Ir))^(-1)at 0.50 V vs.RHE,significantly higher than those of reported majority of AOR catalysts and even commercial PtIr/C.Meanwhile,in situ Fourier transform infrared spectroscopy measurement further reveals that AOR on PtIrW-NCBs dominantly undergoes the dimerization path of NH_(x)(1≤x≤2).In addition,the theoretical calculations also identify that alloying W into PtIr can contribute additional electrons to 5d orbitals of PtIr,enabling the d-band center approaching the Femi level,which in turn induces the high-filling of bonding orbitals of N-N bond in^(*)N_(2)H_(4),promoting the dimerization of^(*)NH_(2)to^(*)N_(2)H_(4)and thus leading to high AOR activity of PtIrW.This work provides new insights for designing efficient AOR electrocatalysts.
基金supported by the National Natural Science Foundation of China(No.51709103)the Natural Science Foundation of Hunan Province,China(Nos.2018JJ3242 and 2021JJ30362)the Science and Technology Innovation Leading Plan of High Tech Industry in Hunan Province(No.2021GK4055).
文摘The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time.While electrochemical advanced oxidation processes(EAOPs)and biotreatments are commonly employed technologies for remediating wastewater and polluted soil,their widespread adoption is hindered by their limitations,which include high costs associated with EAOPs and prolonged remediation time of biotreatments.In the review,we provided an overviewof EAOP technology and biotreatment,emphasizing the critical aspects involved in building a combined system.This review systematically evaluates recent research that combines EAOPswith bioremediation for treating wastewater or contaminated soil as pretreatment or post-treatment process.Research findings suggest that the combined treatment method represents a promising and competitive technology that can overcome some of the limitations of individual treatments.Additionally,we discussed the potential applications of this technology in varying levels of wastewater and soil pollution,as well as the underlying combination mechanisms.
基金funding from the National Natural Science Foundation of China(Nos.22122606,22076142,62276190)National Key Basic Research Program of China(No.2017YFA0403402)+2 种基金National Natural Science Foundation of China(No.U1932119)the Science&Technology Commission of Shanghai Municipality(No.14DZ2261100)the Fundamental Research Funds for the Central Universities。
文摘In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Particularly in chemical engineering and materials science,ML can be used to discover microstructural composition,optimize chemical processes,and create novel synthetic pathways.Electrochemical processes offer the advantages of precise process control,environmental friendliness,high energy conversion efficiency and low cost.This review article provides the first systematic summary of ML in the application of electrochemical oxidation,including pollutant removal,battery remediation,substance synthesis and material characterization prediction.Hot trends at the intersection of ML and electrochemical oxidation were analyzed through bibliometrics.Common ML models were outlined.The role of ML in improving removal efficiency,optimizing experimental conditions,aiding battery diagnosis and predictive maintenance,and revealing material characterization was highlighted.In addition,current issues and future perspectives were presented in relation to the strengths and weaknesses of ML algorithms applied to electrochemical oxidation.In order to further support the sustainable growth of electrochemistry from basic research to useful applications,this review attempts to make it easier to integrate ML into electrochemical oxidation.
基金National Natural Science Foundation of China,Grant/Award Number:22179029Fundamental Research Funds for the Central Universities,Grant/Award Number:buctrc202324+2 种基金Young Elite Scientists Sponsorship Program by BAST,Grant/Award Number:BYESS2023093Ministero dell'Istruzione,dell'Universitàe della Ricerca,Grant/Award Number:2022FNL89YKempestiftelserna。
文摘Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.
基金financially supported by the Shenzhen Science and Technology Innovation Program(Grant No.JCYJ20220530150011024)。
文摘A comprehensive understanding of the dynamic processes at the catalyst/electrolyte interfaces is crucial for the development of advanced electrocatalysts for the oxygen evolution reaction(OER).However,the chemical processes related to surface corrosion and catalyst degradation have not been well understood so far.In this study,we employ LiCoO_(2) as a model catalyst and observe distinct OER activities and surface stabilities in different alkaline solutions.Operando X-ray diffraction(XRD)and online mass spectroscopy(OMS)measurements prove the selective intercalation of alkali cations into the layered structure of LiCoO_(2) during OER.It is proposed that the dynamic cation intercalations facilitate the chemical oxidation process between highly oxidative Co species and adsorbed water molecules,triggering the so-called electrochemical-chemical reaction mechanism(EC-mechanism).The results of this study emphasize the influence of cations on OER and provide insights into new strategies for achieving both high activity and stability in high-performance OER catalysts.
基金financially supported by the National Natural Science Foundation of China(22478211,22179067,22372017)the Major Fundamental Research Program of Natural Science Foundation of Shandong Province(ZR2022ZD10)。
文摘Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more difficult than to O_(2)via a 4e^(-)pathway.Herein,with a series of BiVO_(4)-based photoanodes,the decisive factors determining the PEC activity and selectivity are elucidated,combining a comprehensive experimental and theoretical investigations.It is discovered that the ZnO/BiVO_(4)photoanode(ZnO/BVO)forms a Type-Ⅱheterojunction in energy level alignment.The accelerated photogenerated charge separation/transfer dynamics generates denser surface holes and higher surface photovoltage.Therefore,the activity of water oxidation reaction is promoted.The selectivity of PEC-WO to H_(2)O_(2)is found to be potential-dependent,i.e.,at the lower potentials(PEC-dominated),surface hole density determines the selectivity;and at the higher potentials(electrochemical-dominated),surface reaction barriers govern the selectivity.For the ZnO/BVO heterojunction photoanode,the higher surface hole density facilitates the generation of OH·and the subsequent OH·/OH·coupling to form H_(2)O_(2),thus rising up with potentials;at the higher potentials,the 2-electron pathway barrier over ZnO/BVO surface is lower than over BVO surface,which benefits from the electronic structure regulation by the underlying ZnO alleviating the over-strong adsorption of^(*)OH on BVO,thus,the two-electron pathway to produce H_(2)O_(2)is more favored than on BVO surface.This work highlights the crucial role of band energy structure of semiconductors on both PEC reaction activity and selectivity,and the knowledge gained is expected to be extended to other photoeletrochemical reactions.
文摘Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat microplastic waste and CO_(2)by using environmentally friendly and efficient technologies.In this work,we developed an efficient photoelectrocatalytic system composed of Ni single atoms(Ni SAs)supported by P,N-doped amorphous NiFe_(2)O_(4)(Ni SAs/A-P-N-NFO)as anode and Ag nanoparticles(Ag NPs)supported by CuO/Cu_(2)O nanocubes(Ag NPs@CuO/Cu_(2)O NCs)as cathode for microplastic oxidation and CO_(2)reduction.The Ni SAs/A-P-N-NFO was synthesized by calcination-H_(2)reduction method,and it achieved a Faraday efficiency of 93%for the oxidation reaction of poly(ethylene terephthalate)(PET)solution under AM 1.5 G light.As a photocathode,the synthesized Ag NPs@CuO/Cu_(2)O NCs was utilized to reduce CO_(2)to ethylene and CO at 1.5 V vs.RHE with selectivity of 42%and 55%,respectively.This work shows that the photoelectrocatalysis,as an environmentally friendly technology,is a feasible strategy for reducing the environmental and biological hazards of light plastics,as well as for efficient CO_(2)reduction.
基金supported by the National Key Research and Development Program of China (2022YFB3803600)the National Natural Science Foundation of China (22302067)+2 种基金the Innovation Program of Shanghai Municipal Education Commission (2021-0107-00-02-E00106)the Science and Technology Commission of Shanghai Municipality (22230780200,20DZ2250400)Fundamental Research Funds for the Central Universities (222201717003)。
文摘Photocatalytic water oxidation is a crucial counter-electrode reaction in the process of photoelectrochemical energy conversion.Despite its importance,challenges remain in effectively and sustainably converting water to oxygen,particularly with readily available and inexpensive electrolyte solutions such as seawater.While metal oxide materials have demonstrated their advantages in promoting efficiency by reducing overpotential and improving light utilization,stability remains limited by corrosion in multicomponent seawater.In this paper,we reviewed the relationship between four basic concepts including photoelectrochemistry,metal oxide,water oxidation and seawater to better understand the challenges and opportunities in photoelectrochemical(PEC)seawater oxidation.To overcome these challenges,the advances in material design,interfacial modification,local environment control and reactor design have been further reviewed to benefit the industrial PEC seawater oxidation.Noticeably,we demonstrate engineered layered metal oxide electrodes and cell structures that enable powerful and stable seawater oxidation.We also outline and advise on the future direction in this area.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFE0203802)Natural Science Foundation of Hubei Province, China (Grant No.2022CFA031)Dongguan Innovative Research Team Program (2020607101007)。
文摘Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金Natural Science Foundation of China,Grant/Award Number:22108042Guangzhou(202201020147)。
文摘BiVO_(4)is one of the most promising photoanode materials for photoelectrochemical(PEC)solar energy conversion,but it still suffers from poor photocurrent density due to insufficient light‐harvesting efficiency(LHE),weak photogenerated charge separation efficiency(Φ_(Sep)),and low water oxidation efficiency(Φ_(OX)).Herein,we tackle these challenges of the BiVO_(4)photoanodes using systematic engineering,including catalysis engineering,bandgap engineering,and morphology engineering.In particular,we deposit a NiCoO_(x)layer onto the BiVO_(4)photoanode as the oxygen evolution catalyst to enhance theΦ_(OX)of Fe‐g‐C_(3)N_(4)/BiVO_(4)for PEC water oxidation,and incorporate Fe‐doped graphite‐phase C_(3)N_(4)(Fe‐g‐C_(3)N_(4))into the BiVO_(4)photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm,increase the LHE andΦ_(Sep),and further improve the oxygen evolution reaction activity of the NiCoO_(x)catalytic layer.Consequently,the maximum photocurrent density of the as‐prepared NiCoO_(x)/Fe‐g‐C_(3)N_(4)/BiVO_(4)is remarkably boosted from 4.6 to 7.4 mA cm^(−2).This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE,Φ_(Sep),andΦ_(OX)of BiVO_(4)‐based photoanodes,which will substantially benefit the design,preparation,and large‐scale application of next‐generation high‐performance photoanodes.
基金Hubei Provincial Natural Science Foundation of China (2023AFB0049)Scientific Research Fund Project of Wuhan Institute of Technology (K202232 and K2023028)Graduate Education Innovation Fund of Wuhan Institute of Technology (CX2023091)。
文摘The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production.
基金Ministry of Science and Technology of China(Nos.2019YFC1805002 and 2018YFC1802300)National Natural Science Foundation of China(Nos.42177118 and 51779219)+1 种基金Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China(No.51988101)Overseas Expertise Introduction Center for Discipline Innovation(No.B18047),China.
文摘Identification of chemical oxygen demand(COD)in municipal solid waste(MSW)landfill leachates is a challenging problem.This paper investigated the feasibility of using sodium persulfate(PS),a strong oxidant,as a permeable reactive barrier(PRB)filling material.Firstly,sustained-release persulfate balls were manufactured to adjust the release rate of persulfate,the oxidation agent.In addition,Fe(II)-loaded activated carbon(Fe-AC)was used to help with an even distribution of Fe(II)in the porous medium(PRB in this case).Then,the oxidation efficiency and kinetic rate of COD removal by the sustained-release balls were subjected to batch tests.A mass ratio of 1:1.4:0.24:0.7 for PS:cement:sand:water was the most efficient for COD removal(95%).The breakthrough curve for a 5 mm sustained-release ball revealed that the retardation factor was 1.27 and that the hydrodynamic dispersion coefficient was 15.6 cm^(2)/d.The corresponding half-life of COD oxidation was 0.43 d,which was comparable with the half-life of PS release from sustained-release balls(0.56 d).The sustained-release persulfate balls were shown to be an economical material with a simple recipe and production method when catalyzed by Fe-AC.Compared with cutting-edge methods,sustained-release balls used in PRBs offer significant advantages in terms of both effectiveness and economy for the preparation of sustained-release and catalytic materials.These results verified the feasibility of using sustained-release persulfate balls as a PRB material for COD removal.
基金supported by the National Natural Science Foundation of China(No.22176123)the Natural Science Foundation of Xinjiang(Nos.2020D01C021,2021D01C036)the National Natural Science Foundation of China-Xinjiang Joint Fund(No.U2003123)。
文摘Silver(9 wt.%)was loaded on Co_(3)O_(4)-nanofiber using reduction and impregnation methods,respectively.Due to the stronger electronegativity of silver,the ratios of surface Co^(3+)/Co^(2+) on Ag/Co_(3)O_(4) were higher than on Co_(3)O_(4),which further led to more adsorbed oxygen species as a result of the charge compensation.Moreover,the introducing of silver also obviously improved the reducibility of Co_(3)O_(4).Hence the Ag/Co_(3)O_(4) showed better catalytic performance than Co_(3)O_(4) in benzene oxidation.Compared with the Ag/Co_(3)O_(4) synthesized via impregnation method,the one prepared using reduction method(named as Ag Co-R)exhibited higher contents of surface Co^(3+) and adsorbed oxygen species,stronger reducibility,as well as more active surface lattice oxygen species.Consequently,Ag Co-R showed lowest T_(90) value of 183℃,admirable catalytic stability,largest normalized reaction rate of1.36×10^(-4)mol/(h·m^(2))(150℃),and lowest apparent activation energy(E_(a))of 63.2 kJ/mol.The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol,o-benzoquinone,small molecular intermediates,and finally to CO_(2) and water on the surface of Ag Co-R.At last,potential reaction pathways including five detailed steps were proposed.
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
基金National Natural Science Foundation of China(No.21978182)。
文摘Design of electrode materials for stable and efficient electrocatalytic oxidation of As(Ⅲ)in arsenic-contaminated groundwater poses a great challenge due to the rapid deactivation of catalysts resulting from the high oxygen evolution potential(OEP)and considerable barrier to generating reactive oxygen species(ROS).Herein,an innovative TNAs/SnO_(2)/PEDOT/Fe(Ⅲ)-RuO_(2) multilayer electrode was synthesized by utilizing a PEDOT-coated SnO_(2) interlayer as a supportive framework to combine Fe-doped amorphous RuO_(2) catalytic layer with TiO_(2) nanotube array substrate.Such electrode exhibited high activity and sta-bility for the oxidation of As(Ⅲ)to As(V)due to the large surface area provided by the TiO_(2) nanotube arrays and the SnO_(2)/PEDOT interlayer for facilitating the growth of the catalytic layer.The electrochem-ically active surface area of the electrode reached as high as 31.7 mF/cm^(2).Impressively,the doping of Fe into RuO_(2) layer led to a remarkable increase in the OEP value to 3.12 V,which boosted the indirect oxidation process mediated by ROS at a lower potential to achieve the As(Ⅲ)oxidation ratio of 98.5%.DFT calculations revealed that the Fe-doped amorphous RuO_(2) weakened the adsorption strength of·OH and.SO4-intermediates and lowered the energy barrier for generating ROS.Combined with ESR results,the formation of·OH and·SC4-with strong oxidizing properties was fully verified,providing further evi-dence for the involvement of ROS as the main mediator of the oxidation mechanism of As(Ⅲ).This work may provide valuable perspectives into the design of catalytic layer structures and heteroatom doping modifications for composite-coated electrodes.
基金This project received financial support from Natural Sciences and Engineering Research Council of Canada via a Discovery Grant(2022-00058)Canada Research Chair Fund(3266004)+1 种基金The Fonds de recherche du Quebec-Nature et technologies FRQNT(NCR-327419)We would also like to thank Intlvac Thin Film team for the support.
文摘Biomass electrooxidation has garnered much attention in recent years,owing to its potential to circumvent greenhouse gas emissions.Substituting the sluggish water oxidation with biomass oxidizable species such as lignin at anode is thermodynamically more favorable,enabling energy efficient hydrogen production and concomitant fine chemicals.The present study shows the organosolv lignin electrooxidation in an additively manufactured 3D printed reactor(3DPR)consisting of platinized nickel foam(PtNF)as anode and cathode and compared with commercial hardware electrolyzer(CHE).The electrolysis of organosolv lignin in 3DPR outperformed CHE by achieving 1.23 times higher current at an applied voltage range from 0 to 2.2 V with a membrane(Nafion 115)interposed between anode and cathode under a continuous flow of lignin feed at the anode.The chronoamperometry study reveals a mixture of diverse aromatic compounds,including vanillic acid,syringic acid,3,5-dimethoxy-4-hydroxyacetophenone,2-hydroxyacetophenone,4-ethycathecol,and 2,6-dimethoxyphenol in anolyte,and sinapic acid and vanillin acetate in catholyte.Thus,realizing renewable biomass electrolysis in the 3DPR is an intriguing strategy for the co-production of hydrogen and fine aromatic chemicals.
基金financially supported by the National Natural Science Foundation of China(No.12304077)the Natural Science Foundation of Science and Technology Department of Sichuan Province(No.23NSFSC6224)+3 种基金Sichuan Science and Technology Program(No.2024NSFSC0989)the Key Laboratory of Computational Physics of Sichuan Province(No.YBUJSWL-YB-2022-03)the Material Corrosion and Protection Key Laboratory of Sichuan Province(No.2023CL14 and No.2023CL01)the National Innovation Practice Project(No.202411079005S).
文摘Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.
文摘With the continuous improvement of solar energy production capacity,how to effectively use the electricity generated by renewable solar energy for electrochemical conversion of biomass is a hot topic.Electrochemical conversion of 5-hydroxymethylfurfural(HMF)to biofuels and value-added oxygenated commodity chemicals provides a promising and alternative pathway to convert re-newable electricity into chemicals.Although nickel-based eletrocatalysts are well-known for HMF oxidation,their relatively low intrinsic activity,poor conductivity and stability still limit the poten-tial applications.Here,we report the fabrication of a freestanding nickel-based electrode,in which Ni(OH)_(2) species were in-situ constructed on Ni foam(NF)support using a facile ac-id-corrosion-induced strategy.The Ni(OH)2/NF electrocatalyst exhibits stable and efficient electro-chemical HMF oxidation into 2,5-furandicarboxylic acid(FDCA)with HMF conversion close to 100% with high Faraday efficiency.In-situ formation strategy results in a compact interface between Ni(OH)_(2) and NF,which contributes to good conductivity and stability during electrochemical reac-tions.The superior performance benefits from dynamic cyclic evolution of Ni(OH)_(2) to NiOOH,which acts as the reactive species for HMF oxidation to FDCA.A scaled-up device based on a continu-ous-flow electrolytic cell was also established,giving stable operation with a high FDCA production rate of 27 mg h^(-1)cm^(−2).This job offers a straightforward,economical,and scalable design strategy to design efficient and durable catalysts for electrochemical conversion of valuable chemicals.