The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error do...The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.展开更多
A CaCO_(3)coating with good anticorrosion and adhesion performance was fabricated via ultrasound-assisted chemical conversion on AZ41 magnesium alloy,with a water-bath treated coating as a control.The coating formed o...A CaCO_(3)coating with good anticorrosion and adhesion performance was fabricated via ultrasound-assisted chemical conversion on AZ41 magnesium alloy,with a water-bath treated coating as a control.The coating formed on AZ41 mainly consists of an outer CaCO_(3)layer and an inner(Ca,Mg)CO_(3)layer.Surface characterizations were carried out to obtain the morphology and the chemical composition,mechanical tests were also adopted to assess the hardness and the adhesion of the coating prepared.Afterwards,the long-term corrosion resistance was investigated via electrochemical methods in the chloride-containing Portland cement system.Results show that the ultrasound-assisted coating exhibits higher mechanical properties.In addition,the corrosion resistance of the ultrasound-assisted coating is also higher than that of the bare AZ41 alloy and the water-bath treated coating.This could be due to the formation of a much more compact CaCO_(3)coating on AZ41 Mg alloy,which is mainly benefit from the assistance of the ultrasound.Ultrasound accelerates the nucleation of CaCO_(3)crystals and assists the removal of hydrogen bubbles.Additionally,corrosion mechanism was suggested and discussed for the CaCO_(3)coating.展开更多
The new energy vehicle body composed of multi-metals requires a synchronous chemical conversion coating to exhibit excellent corrosion resistance.Herein,we prepared a titanium/zirconium/water-based oligomeric epoxy si...The new energy vehicle body composed of multi-metals requires a synchronous chemical conversion coating to exhibit excellent corrosion resistance.Herein,we prepared a titanium/zirconium/water-based oligomeric epoxy silane composite chemical conversion coating on multi-metals,and conducted an investigation into its electrochemical behavior and micro-zone structural characteristics upon immersion in a 3.5%NaCl solution.The electrochemical results combined with characterization results revealed that the corrosion evolution characteristics of the composite coatings could be categorized into three stages of mild corrosion,synergistic protection,and substrate damage.Besides,Si-OH groups interact with Me-OH at the defect on the multi-metal surface to form an organic monolayer coating.This organic monolayer coating,in conjunction with the synergistic inorganic conversion layer comprising Al_(2)O_(3),TiO_(2),2H_(2)O,ZrO_(2),2H_(2)O,effectively cooperates with the corrosion products to hinder the erosion by the corrosive medium and suppresses the progression of the anodic reaction.展开更多
Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coat...Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.展开更多
Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morpholog...Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.展开更多
The morphology change of the magnesium matrix after pre-treatment and the morphology as well as the phase composition of chemical conversion coating formed by phosphate were studied using scanning electron microscope ...The morphology change of the magnesium matrix after pre-treatment and the morphology as well as the phase composition of chemical conversion coating formed by phosphate were studied using scanning electron microscope and X-ray diffraction. The corrosion resistance of the coating was studied by salt spray and damp test, and the corrosion tendency during salt immersion test was analyzed. The results show that the phase composition before and after pre-treatment is almost changeless, and the deep microflaw appears between a andβ phases during acidic pickling. The phosphate conversion coating is mainly composed of Mg, MgO, and some amorphous phase, and it can provide a good protection for the AZ31B alloy. Results from corrosive morphology indicate that the growth and the corrosion resistance of the phosphate conversion coating are related to the forming process of the AZ31B matrix.展开更多
A novel Mg-Li alloy was treated in a cerium nitrate solution and cerium chemical conversion coating was obtained on the alloy. Then the forming process, structure and corrosion resistance of the coating were investiga...A novel Mg-Li alloy was treated in a cerium nitrate solution and cerium chemical conversion coating was obtained on the alloy. Then the forming process, structure and corrosion resistance of the coating were investigated. The influential factors of cerium conversion coating were discussed through orthogonal experiments, and the optimum processing parameters were confirmed. XPS spectra displayed that the conversion coating consisted of cerium compounds, and the major component of the protective layer was a mixture of Ce (IV) oxide and Ce (IV) hydroxide. In addition, XRD pattern illustrated that there was crystalline CeO2 in the conversion coating. Analysis by SEM showed that the cerium conversion coating was uniform with a fiber-like morphology. The thickness of the conversion coating was 12 μm. The results of electrochemical potentiodynamic polarization and hydrogen evolution measurement indicated that the cerium conversion coating provided effective protection to the novel Mg-Li alloy.展开更多
5-Methylcytosine(5mC)is the most important epigenetic modification in mammals.The active DNA demethylation could be achieved through the ten-eleven translocation(TET)protein-mediated oxidization of 5mC with the genera...5-Methylcytosine(5mC)is the most important epigenetic modification in mammals.The active DNA demethylation could be achieved through the ten-eleven translocation(TET)protein-mediated oxidization of 5mC with the generation of 5-hydroxymethylcytosine(5hmC),5-formylcytosine(5fC)and 5-carboxylcytosine(5caC).It has been known that 5mC,5hmC and 5fC play critical roles in modulating gene expression.However,unlike the 5mC,5hmC,and 5fC,the functions of 5caC are still underexplored.Investigation of the functions of 5caC relies on the accurate quantification and localization analysis of 5caC in DNA.In the current study,we developed a method by chemical conversion in conjugation with ligation-based real-time quantitative PCR(qPCR)for the site-specific quantification of 5caC in DNA.This method depends on the selective conversion of 5caC to form dihydrouracil(DHU)by pyridine borane treatment.DHU behaves like thymine and pairs with adenine(DHU-A).Thus,the chemical conversion by pyridine borane leads to the transformation of base paring from 5caC-G to DHU-A,which is utilized to achieve the site-specific detection and quantification of 5caC in DNA.As a proof-of-concept,the developed method was successfully applied in the site-specific quantification of 5caC in synthesized DNA spiked in complex biological samples.The method is rapid,straightforward and cost-effective,and shows promising in promoting the investigation of the functional roles of 5caC in future study.展开更多
The corrosion-resistant coating formed on the surface of sintered Nd-Fe-B magnet by a phosphate chemical conversion(PCC)treatment was studied.The morphology,phase composition and thickness of the coating were investig...The corrosion-resistant coating formed on the surface of sintered Nd-Fe-B magnet by a phosphate chemical conversion(PCC)treatment was studied.The morphology,phase composition and thickness of the coating were investigated by field emission scanning electron microscopy(FE-SEM),energy-dispersive spectrometer(EDS),Fourier transform infrared(FTIR)spectrometer and coating thickness gauge.The corrosion behaviour of the phosphated magnet was evaluated by copper sulphate spot test,neutral salt spray test and electrochemical potentiodynamic polarization experiment.The magnetic properties of the phosphated magnet were also tested.The experimental results show that the phosphate coating has such characteristics as dense granular growth,uniform distribution and thickness range of 10-18μm.The corrosion resistance of the magnet is significantly improved by phosphate coating without losing magnetic properties.Therefore,this highly efficient PCC was a good way for increasing the corrosion resistance of the sintered Nd-Fe-B magnets.展开更多
A 6-pyridinium salt(2)was obtalned from 2',3',5'-tri-O-acetyhnosine by use of phosphoryl chloride as the condensmg agent.The conversion of salt(2)into 6-(2- methylphenoxy)-purinenucleoside(3)denvatives und...A 6-pyridinium salt(2)was obtalned from 2',3',5'-tri-O-acetyhnosine by use of phosphoryl chloride as the condensmg agent.The conversion of salt(2)into 6-(2- methylphenoxy)-purinenucleoside(3)denvatives under mild condition is also described.展开更多
Two undescribed Tricholoma triterpenoids,namely tricholopardins C(1)and D(2),were isolated from the wild mushroom Tricholoma pardinum.Their structures with absolute configurations were elucidated by spectroscopic meth...Two undescribed Tricholoma triterpenoids,namely tricholopardins C(1)and D(2),were isolated from the wild mushroom Tricholoma pardinum.Their structures with absolute configurations were elucidated by spectroscopic methods,as well as the single crystal X-ray diffraction.Compounds 1 and 2 were further obtained by chemical conversions from the known analogues.Compound 1 showed significant cytotoxicity to MCF-7 and Hela cell lines with IC_(50)values of 4.7μM and 9.7μM,respectively.Its mechanism of inducing MCF-7 cell apoptosis was studied briefly.展开更多
A number of industrial and biomedical fields,such as hydraulic fracturing balls for gas and petroleum exploitation and implant materials,require Mg alloys with rapid dissolution.An iron-bearing phosphate chemical conv...A number of industrial and biomedical fields,such as hydraulic fracturing balls for gas and petroleum exploitation and implant materials,require Mg alloys with rapid dissolution.An iron-bearing phosphate chemical conversion(PCC)coating with self-catalytic degradation function was fabricated on the Mg alloy AZ31.Surface morphologies,chemical compositions and degradation behaviors of the PCC coating were investigated through FE-SEM,XPS,XRD,FTIR,electrochemical and hydrogen evolution tests.Results indicated that the PCC coating was characterized by iron,its phosphates and hydroxides,amorphous Mg(OH)2 and Mg3-n(HnPO4)2.The self-catalytic degradation effects were predominately concerned with the Fe concentration,chemical composition and microstructure of the PCC coating,which were ascribed to the galvanic corrosion between Fe in the PCC coating and the Mg substrate.The coating with higher Fe content and porous microstructure exhibited a higher degradation rate than that of the AZ31 substrate,while the coating with a trace of Fe and compact surface disclosed a slightly enhanced corrosion resistance for the AZ31 substrate.展开更多
A conversion film was obtained on zinc deposit by immersing zinc coated specimens in a mischmetal salt solution. Several factors affecting the anticorrosive efficiency of the conversion film were studied. The suitabl...A conversion film was obtained on zinc deposit by immersing zinc coated specimens in a mischmetal salt solution. Several factors affecting the anticorrosive efficiency of the conversion film were studied. The suitable technological conditions were established. The composition and the thickness of the conversion film were determined by Auger electron spectroscopy(AES).展开更多
The reactions of perfluoroalkanesulfonyl bromide with a,β-unsaturated esters were studied in detail. The reaction products were further converted to a series of perfluoroalkyl-substituted a, β-unsaturated acids or e...The reactions of perfluoroalkanesulfonyl bromide with a,β-unsaturated esters were studied in detail. The reaction products were further converted to a series of perfluoroalkyl-substituted a, β-unsaturated acids or esters, a-amino acids and γ-lactones. A peculiar peak (M+15)was found to appear in the mass spectra of some perfluoroalkyl-substituted methyl esters. It was interpreted to be the result of a CH_3 group transfer to the molecular ion. Magnetic nonequivalence was observed in the ^(19)F NMR spectra of CF_2 group linked to CH_2 in compounds 2t, g and 3t', g which showed a typical AB pattern, and was attributed to the effect of steric hindrance.展开更多
The effective utilization of natural gas resources is a promising option for the implementation of the"dual carbon"strategy.However,the capture of carbon dioxide with relatively lower concentration after the...The effective utilization of natural gas resources is a promising option for the implementation of the"dual carbon"strategy.However,the capture of carbon dioxide with relatively lower concentration after the combustion of natural gas is the crucial step.Fortunately,the lattice oxygen is used for chemical cycle conversion of methane to overcome the shortcomings mentioned above.A method was proposed to synthesize perovskite for methane cycle conversion using metal organic framework as a precursor.Morphology and pore structure of Fe_(2)O_(3)-LaFeO_(3)composite oxides were regulated by precursor synthesis conditions and calcination process.Moreover,the chemical looping conversion performance of methane was evaluated.The results showed that the pure phase precursor of La[Fe(CN)_(6)]·5H_(2)O was synthesized with the specific surface area of 23.91 m^(2)·g^(-1)under the crystallization of 10 h and the pH value of10.5.Fe_(2)O_(3)-LaFeO_(3)was obtained by controlled calcination of La[Fe(CN)_(6)]·5H_(2)O and Fe_(2)O_(3)with variable mass ratio.The selectivity of CO_(2)can reach more than 99%under the optimal parameters of methane chemical looping conversion:m(Fe_(2)O_(3)):m(LaFeO_(3))=2:1,the reaction temperature is 900℃,the lattice oxygen conversion is less than 40%.Fe_(2)O_(3)-LaFeO_(3)still has good phase and structure stability after five redox reaction and regeneration cycles.展开更多
The influences of chromium-free chemical conversion treatment and anodizing treatment on bonding strength of AZ31 magnesium alloy were studied by lap-shear test, SEM and electrochemical methods. Both chemical conversi...The influences of chromium-free chemical conversion treatment and anodizing treatment on bonding strength of AZ31 magnesium alloy were studied by lap-shear test, SEM and electrochemical methods. Both chemical conversion treatment and anodizing can increase the bonding strength. The anodizing treatment gives higher bonding strength and better corrosion resistance than chemical conversion treatment. The increase of bonding strength by the treatmetlts may be attributed to the uneven surface structures with micro-pores, resulting in increased bonding areas and the embedding effect.展开更多
Cerium sulfate was used as main composite in solution to prepare golden yellow chemical conversion film on magnesium alloy. The influence of solution composition on the surface morphology of golden yellow rare earth c...Cerium sulfate was used as main composite in solution to prepare golden yellow chemical conversion film on magnesium alloy. The influence of solution composition on the surface morphology of golden yellow rare earth conversion film on magnesium alloy was studied by means of SEM; potential-time curves in the formation process of rare earth conversion film and the anti-corrosion property of the conversion film were tested through ECT. The results show that, when there is no other component in the solution besides cerium sulfate, yellow film can be obtained on magnesium alloy, but there are some dusts on the film surface and the solution is not stable. The stability of cerium sulfate solution increases with adding hydrogen peroxide, while the film is thin and its color turn light. After adding combination additive containing Al 3+, smooth and compact golden yellow film was obtained on magnesium alloy. The polarization curves tested in 3.5% NaCl solution show that the anti-corrosion property of magnesium alloy is increased obviously by rare earth conversion film, and the film has self-repairing capability in the corrosion process.展开更多
Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier...Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier and improve the process efficiency.In this paper,based on Gibbs minimum free energy method,the thermodynamic characteristics of biomass liquid chemical looping gasification were studied.Cellulose and lignin,the main components of biomass,were taken as the research objects.Bismuth oxide and antimony oxide were selected as liquid oxygen carriers.The results showed that when the temperature increased from 600℃to 900℃,the output of H_(2)and CO in the products of cellulose gasification increased from 0.5 and 0.3 kmol to 1.3 and 2.6 kmol respectively.Different ratios of oxygen carriers to gasification raw materials had the best molar ratio.The addition of steam in the system was beneficial to the increase of H_(2)content and the increase of H_(2)/CO molar ratio.Bi_(2)O_(3)and Sb_(2)O_(3)with different mass ratios were used as mixed oxygen carriers.The simulation results showed that the gasification temperature of biomass with different mixed oxygen carriers had the same equilibrium trend products.It could be seen from the results of product distribution that the influence of the mixing ratio of Bi_(2)O_(3)and Sb_(2)O_(3)on gas product distribution could be neglected.These results could provide simulation reference and data basis for subsequent research on liquid chemical looping gasification.展开更多
In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings ...In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.展开更多
A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic syn...A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results.展开更多
文摘The authors regret that due to negligence,the picture was misplaced in the original manuscript,resulting in Fig.6d being incorrectly included.The correct version of Fig.6d is provided below for reference.This error does not affect the conclusions of the study,and we apologize for any confusion it may have caused.
基金the National Key Research and Development Program of China(Grant No.2021YFB3701100)the Natural Science Foundation Commission of China(Grant Nos.U20A20234and 51874062)+1 种基金Chongqing Foundation and Advanced Research Project(Grant No.cstc2019jcyj-zdxmX 0010)the Science and Technology Major Project of Shanxi Province(Grant No.20191102008)。
文摘A CaCO_(3)coating with good anticorrosion and adhesion performance was fabricated via ultrasound-assisted chemical conversion on AZ41 magnesium alloy,with a water-bath treated coating as a control.The coating formed on AZ41 mainly consists of an outer CaCO_(3)layer and an inner(Ca,Mg)CO_(3)layer.Surface characterizations were carried out to obtain the morphology and the chemical composition,mechanical tests were also adopted to assess the hardness and the adhesion of the coating prepared.Afterwards,the long-term corrosion resistance was investigated via electrochemical methods in the chloride-containing Portland cement system.Results show that the ultrasound-assisted coating exhibits higher mechanical properties.In addition,the corrosion resistance of the ultrasound-assisted coating is also higher than that of the bare AZ41 alloy and the water-bath treated coating.This could be due to the formation of a much more compact CaCO_(3)coating on AZ41 Mg alloy,which is mainly benefit from the assistance of the ultrasound.Ultrasound accelerates the nucleation of CaCO_(3)crystals and assists the removal of hydrogen bubbles.Additionally,corrosion mechanism was suggested and discussed for the CaCO_(3)coating.
基金financially supported by the National Natural Science Foundation of China(No.52075391).
文摘The new energy vehicle body composed of multi-metals requires a synchronous chemical conversion coating to exhibit excellent corrosion resistance.Herein,we prepared a titanium/zirconium/water-based oligomeric epoxy silane composite chemical conversion coating on multi-metals,and conducted an investigation into its electrochemical behavior and micro-zone structural characteristics upon immersion in a 3.5%NaCl solution.The electrochemical results combined with characterization results revealed that the corrosion evolution characteristics of the composite coatings could be categorized into three stages of mild corrosion,synergistic protection,and substrate damage.Besides,Si-OH groups interact with Me-OH at the defect on the multi-metal surface to form an organic monolayer coating.This organic monolayer coating,in conjunction with the synergistic inorganic conversion layer comprising Al_(2)O_(3),TiO_(2),2H_(2)O,ZrO_(2),2H_(2)O,effectively cooperates with the corrosion products to hinder the erosion by the corrosive medium and suppresses the progression of the anodic reaction.
基金Project(51571134)supported by the National Natural Science Foundation of ChinaProject(2014TDJH104)supported by the SDUST Research Fund+1 种基金the Joint Innovative Centre for Safe and Effective Mining Technology and Equipment of Coal Resources,Shandong Province,ChinaProject(cstc2012jj A50034)supported by the Natural Science Foundation of Chongqing,China
文摘Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.
基金Project supported by the Science and Technology Foundation of Sci. & Tec. Office of Qinhuangdao City (200507)
文摘Golden yellow cerium conversion film was obtained on magnesium alloys surface by immersion method and the preparation parameters were established. The influence of different process parameters on the surface morphology and performance of the conversion film were analyzed by means of SEM and electrochemical method. Formation dynamics about cerium conversion film on magnesium alloy in solution containing cerium salt and the anti-corrosion behavior of the conversion film in 3.5% NaCl solution were studied by electrochemical method respectively. The results shows that the conversion film is more compact at room temperature when concentration of cerium sulfate is 10 g·L-1 in the solution; the open circuit potential of the magnesium sample moves up to positive direction about 100 mV, the surface of conversion film becomes even and lustrous, and the adhesion intensity of conversion film increases when adding aluminum nitrate into the solution containing cerium salt. The pH value of the solution and immersion time of the sample in the solution also affect the surface morphology and anti-corrosion property of the conversion film. After covered by rare earths conversion film, the anti-corrosion property of magnesium alloy is obviously improved. Rare earth conversion film has self-repairing capability in corrosion medium.
基金supported by the National Natural Science Foundation of China(No.50474007)Science and Technology Project of Jiangxi Provincial Departmentof Education (No.[2006]1)
文摘The morphology change of the magnesium matrix after pre-treatment and the morphology as well as the phase composition of chemical conversion coating formed by phosphate were studied using scanning electron microscope and X-ray diffraction. The corrosion resistance of the coating was studied by salt spray and damp test, and the corrosion tendency during salt immersion test was analyzed. The results show that the phase composition before and after pre-treatment is almost changeless, and the deep microflaw appears between a andβ phases during acidic pickling. The phosphate conversion coating is mainly composed of Mg, MgO, and some amorphous phase, and it can provide a good protection for the AZ31B alloy. Results from corrosive morphology indicate that the growth and the corrosion resistance of the phosphate conversion coating are related to the forming process of the AZ31B matrix.
基金Funded by the National Natural Science Foundation of China (No.50603003)
文摘A novel Mg-Li alloy was treated in a cerium nitrate solution and cerium chemical conversion coating was obtained on the alloy. Then the forming process, structure and corrosion resistance of the coating were investigated. The influential factors of cerium conversion coating were discussed through orthogonal experiments, and the optimum processing parameters were confirmed. XPS spectra displayed that the conversion coating consisted of cerium compounds, and the major component of the protective layer was a mixture of Ce (IV) oxide and Ce (IV) hydroxide. In addition, XRD pattern illustrated that there was crystalline CeO2 in the conversion coating. Analysis by SEM showed that the cerium conversion coating was uniform with a fiber-like morphology. The thickness of the conversion coating was 12 μm. The results of electrochemical potentiodynamic polarization and hydrogen evolution measurement indicated that the cerium conversion coating provided effective protection to the novel Mg-Li alloy.
基金supported by the National Natural Science Foundation of China(Nos.22074110,21635006,21721005)the Fundamental Research Funds for the Central Universities(2042021 kf0212).
文摘5-Methylcytosine(5mC)is the most important epigenetic modification in mammals.The active DNA demethylation could be achieved through the ten-eleven translocation(TET)protein-mediated oxidization of 5mC with the generation of 5-hydroxymethylcytosine(5hmC),5-formylcytosine(5fC)and 5-carboxylcytosine(5caC).It has been known that 5mC,5hmC and 5fC play critical roles in modulating gene expression.However,unlike the 5mC,5hmC,and 5fC,the functions of 5caC are still underexplored.Investigation of the functions of 5caC relies on the accurate quantification and localization analysis of 5caC in DNA.In the current study,we developed a method by chemical conversion in conjugation with ligation-based real-time quantitative PCR(qPCR)for the site-specific quantification of 5caC in DNA.This method depends on the selective conversion of 5caC to form dihydrouracil(DHU)by pyridine borane treatment.DHU behaves like thymine and pairs with adenine(DHU-A).Thus,the chemical conversion by pyridine borane leads to the transformation of base paring from 5caC-G to DHU-A,which is utilized to achieve the site-specific detection and quantification of 5caC in DNA.As a proof-of-concept,the developed method was successfully applied in the site-specific quantification of 5caC in synthesized DNA spiked in complex biological samples.The method is rapid,straightforward and cost-effective,and shows promising in promoting the investigation of the functional roles of 5caC in future study.
基金financially supported by the China National Major Special Project for the Rare Earth and Rare Metallic Materials(No.(2012)1743)。
文摘The corrosion-resistant coating formed on the surface of sintered Nd-Fe-B magnet by a phosphate chemical conversion(PCC)treatment was studied.The morphology,phase composition and thickness of the coating were investigated by field emission scanning electron microscopy(FE-SEM),energy-dispersive spectrometer(EDS),Fourier transform infrared(FTIR)spectrometer and coating thickness gauge.The corrosion behaviour of the phosphated magnet was evaluated by copper sulphate spot test,neutral salt spray test and electrochemical potentiodynamic polarization experiment.The magnetic properties of the phosphated magnet were also tested.The experimental results show that the phosphate coating has such characteristics as dense granular growth,uniform distribution and thickness range of 10-18μm.The corrosion resistance of the magnet is significantly improved by phosphate coating without losing magnetic properties.Therefore,this highly efficient PCC was a good way for increasing the corrosion resistance of the sintered Nd-Fe-B magnets.
文摘A 6-pyridinium salt(2)was obtalned from 2',3',5'-tri-O-acetyhnosine by use of phosphoryl chloride as the condensmg agent.The conversion of salt(2)into 6-(2- methylphenoxy)-purinenucleoside(3)denvatives under mild condition is also described.
基金This work was financially supported by the National Natural Science Foundation of China(81872762)the Hubei Provincial Natural Science Foundation of China(2019CFB387).
文摘Two undescribed Tricholoma triterpenoids,namely tricholopardins C(1)and D(2),were isolated from the wild mushroom Tricholoma pardinum.Their structures with absolute configurations were elucidated by spectroscopic methods,as well as the single crystal X-ray diffraction.Compounds 1 and 2 were further obtained by chemical conversions from the known analogues.Compound 1 showed significant cytotoxicity to MCF-7 and Hela cell lines with IC_(50)values of 4.7μM and 9.7μM,respectively.Its mechanism of inducing MCF-7 cell apoptosis was studied briefly.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51571134)the Scientific Research Foundation of Shandong University of Science and Technology Research Fund(2014TDJH104).
文摘A number of industrial and biomedical fields,such as hydraulic fracturing balls for gas and petroleum exploitation and implant materials,require Mg alloys with rapid dissolution.An iron-bearing phosphate chemical conversion(PCC)coating with self-catalytic degradation function was fabricated on the Mg alloy AZ31.Surface morphologies,chemical compositions and degradation behaviors of the PCC coating were investigated through FE-SEM,XPS,XRD,FTIR,electrochemical and hydrogen evolution tests.Results indicated that the PCC coating was characterized by iron,its phosphates and hydroxides,amorphous Mg(OH)2 and Mg3-n(HnPO4)2.The self-catalytic degradation effects were predominately concerned with the Fe concentration,chemical composition and microstructure of the PCC coating,which were ascribed to the galvanic corrosion between Fe in the PCC coating and the Mg substrate.The coating with higher Fe content and porous microstructure exhibited a higher degradation rate than that of the AZ31 substrate,while the coating with a trace of Fe and compact surface disclosed a slightly enhanced corrosion resistance for the AZ31 substrate.
文摘A conversion film was obtained on zinc deposit by immersing zinc coated specimens in a mischmetal salt solution. Several factors affecting the anticorrosive efficiency of the conversion film were studied. The suitable technological conditions were established. The composition and the thickness of the conversion film were determined by Auger electron spectroscopy(AES).
文摘The reactions of perfluoroalkanesulfonyl bromide with a,β-unsaturated esters were studied in detail. The reaction products were further converted to a series of perfluoroalkyl-substituted a, β-unsaturated acids or esters, a-amino acids and γ-lactones. A peculiar peak (M+15)was found to appear in the mass spectra of some perfluoroalkyl-substituted methyl esters. It was interpreted to be the result of a CH_3 group transfer to the molecular ion. Magnetic nonequivalence was observed in the ^(19)F NMR spectra of CF_2 group linked to CH_2 in compounds 2t, g and 3t', g which showed a typical AB pattern, and was attributed to the effect of steric hindrance.
基金supported by the National Natural Science Foundation of China(21908021)the China Petroleum Science and Technology Innovation Fund project(2021DQ020701)+2 种基金the High-Level Talent Project of Heilongjiang Province of China(2020GSP17)the New Energy and New Direction Project of Northeast Petroleum University(XNYXLY202102)the Guiding Innovation Fund of Northeast Petroleum University(2021YDL03).
文摘The effective utilization of natural gas resources is a promising option for the implementation of the"dual carbon"strategy.However,the capture of carbon dioxide with relatively lower concentration after the combustion of natural gas is the crucial step.Fortunately,the lattice oxygen is used for chemical cycle conversion of methane to overcome the shortcomings mentioned above.A method was proposed to synthesize perovskite for methane cycle conversion using metal organic framework as a precursor.Morphology and pore structure of Fe_(2)O_(3)-LaFeO_(3)composite oxides were regulated by precursor synthesis conditions and calcination process.Moreover,the chemical looping conversion performance of methane was evaluated.The results showed that the pure phase precursor of La[Fe(CN)_(6)]·5H_(2)O was synthesized with the specific surface area of 23.91 m^(2)·g^(-1)under the crystallization of 10 h and the pH value of10.5.Fe_(2)O_(3)-LaFeO_(3)was obtained by controlled calcination of La[Fe(CN)_(6)]·5H_(2)O and Fe_(2)O_(3)with variable mass ratio.The selectivity of CO_(2)can reach more than 99%under the optimal parameters of methane chemical looping conversion:m(Fe_(2)O_(3)):m(LaFeO_(3))=2:1,the reaction temperature is 900℃,the lattice oxygen conversion is less than 40%.Fe_(2)O_(3)-LaFeO_(3)still has good phase and structure stability after five redox reaction and regeneration cycles.
基金Funded by the Key Project of Science and Technology of Ministry of Education of China(No.108129)
文摘The influences of chromium-free chemical conversion treatment and anodizing treatment on bonding strength of AZ31 magnesium alloy were studied by lap-shear test, SEM and electrochemical methods. Both chemical conversion treatment and anodizing can increase the bonding strength. The anodizing treatment gives higher bonding strength and better corrosion resistance than chemical conversion treatment. The increase of bonding strength by the treatmetlts may be attributed to the uneven surface structures with micro-pores, resulting in increased bonding areas and the embedding effect.
文摘Cerium sulfate was used as main composite in solution to prepare golden yellow chemical conversion film on magnesium alloy. The influence of solution composition on the surface morphology of golden yellow rare earth conversion film on magnesium alloy was studied by means of SEM; potential-time curves in the formation process of rare earth conversion film and the anti-corrosion property of the conversion film were tested through ECT. The results show that, when there is no other component in the solution besides cerium sulfate, yellow film can be obtained on magnesium alloy, but there are some dusts on the film surface and the solution is not stable. The stability of cerium sulfate solution increases with adding hydrogen peroxide, while the film is thin and its color turn light. After adding combination additive containing Al 3+, smooth and compact golden yellow film was obtained on magnesium alloy. The polarization curves tested in 3.5% NaCl solution show that the anti-corrosion property of magnesium alloy is increased obviously by rare earth conversion film, and the film has self-repairing capability in the corrosion process.
基金support of the National Natural Science Foundation of China(22038011,51976168)the K.C.Wong Education Foundation+3 种基金China Postdoctoral Science Foundation(2019M653626)Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-06)the Promotion Plan for Young People of Shaanxi Association for Science and Technology(20180402)the Technology Foundation for Selected Overseas Chinese Scholar in Shaanxi Province(2018015)。
文摘Liquid chemical looping technology is an innovation of chemical looping conversion technology.Using liquid metal oxide as the oxygen carrier during gasification process could prolong the service life of oxygen carrier and improve the process efficiency.In this paper,based on Gibbs minimum free energy method,the thermodynamic characteristics of biomass liquid chemical looping gasification were studied.Cellulose and lignin,the main components of biomass,were taken as the research objects.Bismuth oxide and antimony oxide were selected as liquid oxygen carriers.The results showed that when the temperature increased from 600℃to 900℃,the output of H_(2)and CO in the products of cellulose gasification increased from 0.5 and 0.3 kmol to 1.3 and 2.6 kmol respectively.Different ratios of oxygen carriers to gasification raw materials had the best molar ratio.The addition of steam in the system was beneficial to the increase of H_(2)content and the increase of H_(2)/CO molar ratio.Bi_(2)O_(3)and Sb_(2)O_(3)with different mass ratios were used as mixed oxygen carriers.The simulation results showed that the gasification temperature of biomass with different mixed oxygen carriers had the same equilibrium trend products.It could be seen from the results of product distribution that the influence of the mixing ratio of Bi_(2)O_(3)and Sb_(2)O_(3)on gas product distribution could be neglected.These results could provide simulation reference and data basis for subsequent research on liquid chemical looping gasification.
基金support of the PID2021-124341OB-C22/AEI/10.13039/501100011033/FEDER,UE(MICIU)J.M.Vega also acknowledges the Grant RYC2021-034384-I funded by MICIU/AEI/10.13039/501100011033 and by“European Union Next Generation EU/PRTR”.
文摘In this study,a phosphate-based conversion coating(PCC)was applied as a precursor before forming silicate-fluoride(SiF)and silicate-phosphate-fluoride(SiPF)based flash-plasma electrolytic oxidation(Flash-PEO)coatings on AZ31B magnesium alloy.The main novelty is the successful incorporation of calcium,zinc,manganese and phosphate species into the Flash-PEO coatings via a precursor layer rather than using the electrolyte.The precursor also led to longer lasting and more intense discharges during the PEO process,resulting in increased pore size.Corrosion studies revealed similar short-term performance for all coatings,with impedance modulus at low frequencies above 10^(7)Ωcm^(2),and slightly better performance for the SiPF-based coating.Nonetheless,the enlarged pores in the PEO coatings functionalized with the PCC precursor compromised the effectiveness of self-healing mechanisms by creating diffusion pathways for corrosive species,leading to earlier failure.These phenomena were effectively monitored by recording the open circuit potential during immersion in 0.5 wt.%NaCl solution.In summary,this study demonstrates that conversion coatings are a viable option for the functionalization of PEO coatings on magnesium alloys,as they allow for the incorporation of cationic and other species.However,it is crucial to maintain a small pore size to facilitate effective blockage through self-healing mechanisms.
文摘A series of multi-hydroxyl bis-(quaternary ammonium)ionic liquids(Ils1‒7)was prepared as bifunctional catalysts for the chemical fixation of CO_(2).All these ionic liquid compounds were efficient for the catalytic synthesis of cyclic carbonates and oxazolidinones via the cycloaddition reactions between CO_(2) and epoxides or aziridines with excellent yield and high selectivity in the absence of co-catalyst,metal and solvent.Due to the synergistic effects of hydroxyl groups and halogen anion,the cycloaddition reactions proceeded smoothly either at atmospheric pressure or room temperature.The selectivity for substituted oxazolidinones at 5-and 4-positions can be tuned via changing the reaction conditions.Finally,possible mechanisms including the activation of both CO_(2) and epoxide or aziridines were proposed based on the literatures and experimental results.