期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
The Preparation of Nano Silver by Chemical Reduction Method 被引量:1
1
作者 Tevfik Raci Sertbakan Emad K. Al-Shakarchi Saif Sultan Mala 《Journal of Modern Physics》 2022年第1期81-88,共8页
A silver nanostructures prepared by using chemical reduction method. The silver nanoparticles were prepared with diameters of about (20 nm). Numerous techniques had been used to study the optical, structural like the ... A silver nanostructures prepared by using chemical reduction method. The silver nanoparticles were prepared with diameters of about (20 nm). Numerous techniques had been used to study the optical, structural like the UV-Vis absorption spectrometer, Ttransmission Electron Microscopy (TEM), Field-Emission Scanning Electron microscope (FESEM), and X-ray diffraction (XRD). The practical results exhibited the absorption spectrum of the prepared nanoparticles at (357 nm), it was found that there is a relationship between the positions of the optical absorption peak and the size of the silver nanoparticles. The analysis of TEM results showed the presence of nanoparticles in the range (20 nm). The analyzing of XRD results explained the crystal structure for silver nanoparticles. It is found a cubic unit cell have a lattice constants (a = 4.0855 <span style="white-space:nowrap;">&Aring;</span>), with the Miller indices were (111), (002), (002), and (113). 展开更多
关键词 chemical reduction method UV-Vis Absorption Spectrometer Field-Emission Scanning Electron Microscope Ttransmission Electron Microscopy
在线阅读 下载PDF
Fe3O4 and Fe Nanoparticles by Chemical Reduction of Fe(acac)3 by Ascorbic Acid: Role of Water 被引量:1
2
作者 Ajinkya G. Nene Makoto Takahashi Prakash R. Somani 《World Journal of Nano Science and Engineering》 2016年第1期20-28,共9页
Nanoparticles of Fe<sub>3</sub>O<sub>4</sub> and Fe are chemically synthesized by reduction of Fe(acac)<sub>3</sub> using ascorbic acid in controlled condition. It was observed that... Nanoparticles of Fe<sub>3</sub>O<sub>4</sub> and Fe are chemically synthesized by reduction of Fe(acac)<sub>3</sub> using ascorbic acid in controlled condition. It was observed that addition of water during the chemical synthesis process yields Fe3O4 nanoparticles, whereas if the reaction is carried out in absence of water yields Fe nanoparticles—which get oxidized upon exposure to air atmosphere. Fe<sub>3</sub>O<sub>4</sub> (15 ± 5 nm) and Fe/iron oxide nanoparticles (7 ± 1 nm) were successfully synthesized in the comparative study reported herewith. Mechanism for formation/synthesis of Fe<sub>3</sub>O<sub>4</sub> and Fe/iron oxide nanoparticles is proposed herewith in which added water acts as an oxygen supplier. Physico-chemical characterization done by SEM, TEM, EDAX, and XPS supports the proposed mechanism. 展开更多
关键词 Fe3O4 Nanoparticles Fe-Nanoparticles Iron Oxide chemical reduction method
在线阅读 下载PDF
Optical Properties of Silver Nanoplates Synthesized by Photoinduced Method 被引量:1
3
作者 WANG Xiaofang NAN Fan +2 位作者 LIANG Shan ZHOU Li WANG Ququan 《Wuhan University Journal of Natural Sciences》 CAS 2013年第3期201-206,共6页
Silver nanoplates were synthesized in aqueous solution by photoinduced chemical reduction method with tungsten lamp as light source.The growth process was analyzed and characterized.The linear absorption spectra showe... Silver nanoplates were synthesized in aqueous solution by photoinduced chemical reduction method with tungsten lamp as light source.The growth process was analyzed and characterized.The linear absorption spectra showed that,along with the growth process,the surface plasmon resonance of silver seed nanoparticles at 395 nm decreased gradually,while a new plasmon band at 740 nm corresponding to silver nanoplates appeared and increased gradually.Z-scan technique was used to explore the nonlinear optical properties of silver nanoplates.The results displayed that with the reaction time increases from 0 h to 24 h,the value of nonlinear absorption(NLA) coefficient and the value of nonlinear refraction(NLR) index of the products increased from 0 to 3.167 cm/GW and from 0.64×10^ 4 to 6.83×10 ^4 cm 2 /GW,respectively. 展开更多
关键词 photoinduced chemical reduction method silver nanoplates surface plasmon nonlinear absorption nonlinear refraction
原文传递
Synthesis and electrochemical performance of a novel nano sized Sn_2SbNi composite
4
作者 郭洪 林雪飞 陈益山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期253-256,共4页
Chemical reduction method was employed to prepare nano-sized Sn2SbNi alloy composites used as anode material for rechargeable lithium ion batteries.This strategy was adopted to combine the virtues of both active/inact... Chemical reduction method was employed to prepare nano-sized Sn2SbNi alloy composites used as anode material for rechargeable lithium ion batteries.This strategy was adopted to combine the virtues of both active/inactive and active/active alloys to fabricate a Sn2SbNi alloy powder with two active components and one inactive component.The two active components can realize the high capacity feature of electrode and can make the volume change of electrode take place in a stepwise manner due to the different lithiation potentials of two active components,leading to a stable cycling performance.Sn2SbNi alloy provides a reversible specific capacity over 640 mA·h/g with an excellent cyclic ability.The Sn-Sb-Ni alloy composite material shows to be a good candidate anode material for the lithium ion batteries. 展开更多
关键词 Li-ion batteries Sn2SbNi composite anode materials chemical reduction method
在线阅读 下载PDF
A Pioneering Approach to the Synthesis of Silver Nanoparticles
5
作者 Wasan A. Al-Dulaimi Zeena M. Al-Azzawi Emad K. Al-Shakarchi 《Journal of Materials Science and Chemical Engineering》 2024年第7期14-22,共9页
Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various... Our research introduces a groundbreaking chemical reduction method for synthesizing silver nanoparticles, marking a significant advancement in the field. The nanoparticles were meticulously characterized using various techniques, including optical analysis, structural analysis, transmission electron microscopy (TEM), and field-emission scanning electron microscope (FESEM). This thorough process instills confidence in the accuracy of our findings. The results unveiled that the silver nanoparticles had a diameter of less than 20 nm, a finding of great importance. The absorption spectrum decreased in the peak wavelength range (405 - 394 mm) with increasing concentrations of Ag nanoparticles in the range (1 - 5%). The XRD results indicated a cubic crystal structure for silver nanoparticles with the lattice constant (a = 4.0855 Å), and Miller indices were (111), (002), (002), and (113). The simulation on the XRD pattern showed a face center cubic phase with space group Fm-3m, providing valuable insights into the structure of the nanoparticles. 展开更多
关键词 chemical reduction method UV-VIS Absorption Spectrometer Field-Emission Scanning Electron Microscope (FESEM) Transmission Electron Microscopy (TEM)
在线阅读 下载PDF
Size control and its mechanism of SnAg nanoparticles 被引量:1
6
作者 张卫鹏 邹长东 +2 位作者 赵炳戈 翟启杰 高玉来 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期750-757,共8页
Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, ... Sn3.5Ag (mass fraction, %) nanoparticles were synthesized by an improved chemical reduction method at room temperature. 1,10-phenanthroline and sodium borohydride were selected as the surfactant and reducing agent, respectively. It was found that no obvious oxidation of the synthesized nanoparticles was traced by X-ray diffraction. In addition, the results show that the density of primary particles decreases with decreasing the addition rate of the reducing agent. Moreover, the slight particle agglomeration and slow secondary particle growth can result in small-sized nanoparticles. Meanwhile, the effect of surfactant concentration on the particle size can effectively be controlled when the reducing agent is added into the precursor at an appropriate rate. In summary, the capping effect caused by the surfactant molecules coordinating with the nanoclusters will restrict the growth of the nanoparticles. The larger the mass ratio of the surfactant to the precursor is, the smaller the particle size is. 展开更多
关键词 Sn3.5Ag size control NANOPARTICLES chemical reduction method
在线阅读 下载PDF
Low temperature synthesis and thermal properties of Ag-Cu alloy nanoparticles 被引量:3
7
作者 W.BHAGATHSINGH A.SAMSON NESARAJ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期128-133,共6页
Ag-Cu alloy nanoparticles were synthesized by simple low temperature chemical reduction method using metal salts(acetate/sulphates) in aqueous solution with sodium borohydride as reducing agent.The chemical reductio... Ag-Cu alloy nanoparticles were synthesized by simple low temperature chemical reduction method using metal salts(acetate/sulphates) in aqueous solution with sodium borohydride as reducing agent.The chemical reduction was carried out in the presence of nitrogen gas in order to prevent the oxidation of copper during the reaction process.The alloy nanoparticles were characterized by XRD,UV-Vis,particle size analysis,EDS,TG-DTA and SEM analysis.From the XRD analysis,the crystallite sizes of the prepared samples were calculated using Scherrer formula and the values were found to be in the range of 15 nm.UV-Vis studies conform the formation of alloy nanoparticles.EDS analysis shows the presence of silver and copper in the samples.The SEM observation reveals that the samples consist of grains with average grain size up to 40 nm,and the particle size dependant melting point was studied by TG-DTA. 展开更多
关键词 Ag-Cu alloy nanoparticles chemical reduction method CHARACTERIZATION
在线阅读 下载PDF
Growth-controlled synthesis of polymer-coated colloidal-gold nanoparticles using electrospray-based chemical reduction
8
作者 Mohamed Hasaan Hussain Noor Fitrah Abu Bakar +4 位作者 Kim-Fatt Low Ana Najwa Mustapa Fatmawati Adam Mohd Nazli Naim I.Wuled Lenggoroe 《Particuology》 SCIE EI CAS CSCD 2021年第4期72-81,共10页
In this study,the controlled nucleation and growth of gold nanoparticles(GNPs)were investigated using a self-repelled mist in a liquid chemical reaction environment.An electrospray-based chemical reduction method was ... In this study,the controlled nucleation and growth of gold nanoparticles(GNPs)were investigated using a self-repelled mist in a liquid chemical reaction environment.An electrospray-based chemical reduction method was conducted in the aqueous region and at room temperature to synthesize the polymeric-stabilized gold nanoparticles.The electrospray technique was used to atomize a hydrogen tetrachloraurate(III)(HAuCl4)precursor solution into electrostatically charged droplets.The atomized droplets were dispersed in an aqueous reaction bath containing L-ascorbic acid as a reducing agent and polyvinylpyrrolidone(PVP)as a stabilizer.The effect of the electrospray parameters,specifically the flow rate and electrospray droplet size,as well as the reaction conditions such as the concentration of reactants,pH,and stabilizer(PVP),were investigated.The mean diameter of the GNPs increased from around 4 to 9 nm with an increase in the electrospray flow rate,droplet size,and current passing through the electrospray jet.Spherical and monodispersed GNPs were synthesized at a relatively high flow rate of 2 mL/h and a moderate concentration of 2 mM of precursor solution.The smallest-sized GNP with a high monodispersity was obtained in the reaction bath at a high pH of 10.5 and in the presence of PVP.It is expected that continuous and mass production of the engineered GNPs and other noble metal nanoparticles could be established for scaling up nanoparticle production via the proposed electrospray-based chemical reduction method. 展开更多
关键词 ELECTROSPRAY Gold nanoparticles chemical reduction method L-ascorbic acid PVP Aqueous medium
原文传递
Physicochemical properties and antibacterial application of silver nanoparticles stabilized by whey protein isolate
9
作者 Aoqiong Zeng Beibei Wang +3 位作者 Cheng Zhang Ruijin Yang Shuhuai Yu Wei Zhao 《Food Bioscience》 SCIE 2022年第2期498-506,共9页
Nano metal materials have been widely explored to be applied in medical,environmental,and material science.Among these nanoparticles,especially silver nanoparticles(AgNPs),have drawn increasing attention for antimicro... Nano metal materials have been widely explored to be applied in medical,environmental,and material science.Among these nanoparticles,especially silver nanoparticles(AgNPs),have drawn increasing attention for antimicrobial applications.Most researchers are keen on the development of the biologically friendly capping reagents for the synthesis of AgNPs,instead of unfriendly organic polymers.In this study,the liquid chemical reduction method was used to synthesize AgNPs with edible whey protein isolate(WPI)as a capping reagent.These WPI-AgNPs had a broad size distribution(average diameter of 138.6 nm),and their dimensions could be readily controlled in the range of 22.5-149.6 nm by introducing different concentrations of chloride.Subsequently,it was confirmed that WPI-AgNPs were formed through two mechanisms,which were respectively reduced in situ(without the addition of NaCl)and ex situ(in presence of NaCl)to yield silver nanoparticles.The WPI-AgNPs synthesized in presence of 10 mM of NaCl as mediation reagent were stable at room temperature or 4℃ up to 3 months.Furthermore,the synthesized WPI-AgNPs had a good antibacterial activity toward pathogens including Gram-negative E.coli and Gram-positive S.aureus.The results shed light on method and capping reagent to stabilize silver nanoparticles,which highlighted the potential of WPI and chloride in metal nanoparticle synthesis. 展开更多
关键词 Silver nanoparticles Whey protein isolate CHLORIDE Liquid chemical reduction method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部