A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In thi...A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In this study, it was found that nickel and palladium can form complexes with dimethylglyoxime(0. 05%, mass fraction) at pH 6.0 and can be extracted into chloroform quantitatively. The complexes can be evaporated into plasma at a suita-ble temperature( 1400℃) for ICP-OES detection. Under the optimized conditions, the detection limits of nickel and palladium are 0.48 and 0. 40 ng/mL, respectively, while the RSD values are separately 5.0% and 3.1% (p = 50 ng/mL, n = 7). The proposed method was applied to the determination of the target analytes in environmental sam-ples with satisfactory results.展开更多
Acid mine drainage(AMD)seriously pollutes the environment due to its high acidity and a variety of heavy metals.Although lime neutralization has traditionally been employed to treat AMD,it comes with disadvantages,suc...Acid mine drainage(AMD)seriously pollutes the environment due to its high acidity and a variety of heavy metals.Although lime neutralization has traditionally been employed to treat AMD,it comes with disadvantages,such as the large quantity of lime required and the generation of substantial amounts of neutralized sludge.Hence,we propose a modified chemical mineralization coupled with sodium sulfide precipitation to simultaneously recover metals from AMD and neutralize acidity.The modified chemical mineralization process effectively removed total iron(TFe)and SO_(4)^(2-) through chemically forming schwertmannite(Sch).By regulating temperature and H_(2)O_(2) addition mode,the hydrolysis of Fe3+and SO_(4)^(2-) in chemical mineralization was significantly enhanced,resulting in a high yield of Sch.Subsequent introduction of sodium sulfide to already-treated AMD using modified chemical mineralization could harvest or recover other valuable metals other than Fe and maintain a neutral pH of the final effluent.The metal levels in the sulphide precipitation reached as high as 17.9 mg/g,which was three times higher than that achieved through lime neutralization(6.3 mg/g).Moreover,the cost of treating AMD was 15 Chinese Yuan(CNY)/m^(3) AMD,which was significantly lower than that of lime neutralization(35 CNY/m^(3) AMD).Therefore,this approach has a good engineering application prospect in actual AMD treatment.展开更多
The generation of chemically engineered essential oils(CEEOs)prepared from bi-heteroatomic reactions using ammonium thiocyanate as a source of bioactive compounds is described.The impact of the reaction on the chemica...The generation of chemically engineered essential oils(CEEOs)prepared from bi-heteroatomic reactions using ammonium thiocyanate as a source of bioactive compounds is described.The impact of the reaction on the chemical composition of the mixtures was qualitatively demonstrated through GC-MS,utilizing univariate and multivariate analysis.The reaction transformed most of the components in the natural mixtures,thereby expanding the chemical diversity of the mixtures.Changes in inhibition properties between natural and CEEOs were demonstrated through acetylcholinesterase TLC autography,resulting in a threefold increase in the number of positive events due to the modification process.The chemically engineered Origanum vulgare L.essential oil was subjected to bioguided fractionation,leading to the discovery of four new active compounds with similar or higher potency than eserine against the enzyme.The results suggest that the directed chemical transformation of essential oils can be a valuable strategy for discovering new acetylcholinesterase(AChE)inhibitors.展开更多
High pressure enables the creation of novel functional materials by modifying chemical bonding and crystal structure,opening avenues for the development of high-energy-density polynitrogen materials.We present the hig...High pressure enables the creation of novel functional materials by modifying chemical bonding and crystal structure,opening avenues for the development of high-energy-density polynitrogen materials.We present the high-pressure synthesis of three polynitrides P1 AgN7,P21/c AgN5,and P-1 AgN4,achieved through direct reactions between silver and nitrogen.Notably,the synthesis pressures required for the formation of N5 and N6 rings from metal–nitrogen reactions in this work represent the lowest values reported to date in high-pressure studies.At 15 GPa,isolated N5 rings are stabilized in P1 AgN7 and P21/c AgN5.At 26.3 GPa,P-1 AgN4 is synthesized,featuring infinite onedimensional nitrogen chains composed of alternating N2 and N6 rings,a unique catenation not observed in other polynitrides.In addition,AgN7,AgN5,and AgN4 possess significantly higher volumetric energy densities Ev than the conventional explosive TNT,making them promising high-energy-density materials.展开更多
Stability, specificity, and pharmacokinetic properties are some of the challenges facing RNAi therapeutics. In this review, the progresses in chemically modified siRNAs and siRNA conjugates are summarized. The proper ...Stability, specificity, and pharmacokinetic properties are some of the challenges facing RNAi therapeutics. In this review, the progresses in chemically modified siRNAs and siRNA conjugates are summarized. The proper modification of siRNA with nucleoside analogues, construction of siRNA conjugates, and reliable prediction of the property based on those strategies for a given siRNA sequence would certainly be an essential part of the solution to these challenges.展开更多
Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite elec...Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite electrode has high specific surface area and high current density. The electrode modified by transition metallic ions has improved catalysis behavior that can catalyze the V(Ⅱ)-V(Ⅴ) redox reaction showed by cyclic voltammograms. This article studied the impedance of the modified electrode by electrochemical impedance spectroscopy (EIS), and approved that the electrode modified by Co^2+ and Mn^2+ has a lower charge transfer resistance than the non-modified electrode. The effect of average particle size distribution is at lower frequencies that the slope of Warburg impedance is reduced by large particle size distribution. The voltage efficiency of the Co^2+ modified electrode test cell is 81.5%, which is higher than that of the non-modified electrode.展开更多
In the present work,a chemically modified electrode has been fabricated utilizing Bi_(2)O_(3)/ZnO nanocomposite.The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and ...In the present work,a chemically modified electrode has been fabricated utilizing Bi_(2)O_(3)/ZnO nanocomposite.The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and morphological properties by using XRD,FESEM,EDAX,HRTEM and XPS techniques.The results clearly indicated co-existence of Bi_(2)O_(3) and ZnO in the nanocomposite with chemical interaction between them.Bi_(2)O_(3)/ZnO nanocomposite based glassy carbon electrode(GCE)was utilized for sensitive voltammetric detection of an anti-biotic drug(balofloxacin).The modification amplified the electroactive surface area of the sensor,thus providing more sites for oxidation of analyte.Cyclic and square wave voltammograms revealed that Bi_(2)O_(3)/ZnO modified electrode provides excellent electrocatalytic action towards balofloxacin oxidation.The current exhibited a wide linear response in concentration range of 150e1000 nM and detection limit of 40.5 nM was attained.The modified electrode offered advantages in terms of simplicity of preparation,fair stability(RSD 1.45%),appreciable reproducibility(RSD 2.03%)and selectivity.The proposed sensor was applied for determining balofloxacin in commercial pharmaceutical formulations and blood serum samples with the mean recoveries of 99.09% and 99.5%,respectively.展开更多
Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affec...Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affected by the voltage applied to them. For polypyrrole, the oxidized state is an electronic conductor and the reduced state is essentially insulating. Using this property, one can fabricate the polymer-based electronic devices. Experimental results of Pickun展开更多
In a phosphate buffer, a hemoglobin (Hb)-imprinted polymer complex was prepared using maleic anhydride (MAH) modified chitosan beads as matrix, acrylamide (AM) as functional monomer, N,N-methylenebisacrylamide (MBA) a...In a phosphate buffer, a hemoglobin (Hb)-imprinted polymer complex was prepared using maleic anhydride (MAH) modified chitosan beads as matrix, acrylamide (AM) as functional monomer, N,N-methylenebisacrylamide (MBA) as cross-linker and potassiumpersulfate (KPS) / sodium hydrogen sulfite (NaHSO3) as initiators. Langmuir analysis showed that an equal class of adsorption was formed in the molecular imprinting polymer (MIP), and the MIP has high adsorption capacity and selectivity for the imprinted molecule. The MIP can be reused and the recovery was approximately 100% at low concentration.展开更多
An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled mo...An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled monolayers(SAM) to chemically treat the silver source–drain(S/D) contacts while the silicon oxide(SiO2) dielectric interface is further primed by either hexamethyldisilazane(HMDS) or octyltrichlorosilane(OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm^2·V^-1·s^-1 to 0.91 cm^2·V^-1·s^-1.展开更多
A novel electrode material based on chemically modified graphene (CMG) with aminophenyl groups is covalently functionalized by a nucleophilic ring-opening reaction between the epoxy groups of graphene oxide and the ...A novel electrode material based on chemically modified graphene (CMG) with aminophenyl groups is covalently functionalized by a nucleophilic ring-opening reaction between the epoxy groups of graphene oxide and the aminophenyl groups of p-phenylenediamine. Palladium nanoparticles with an average diameter of 4.2 nm are deposited on the CMG by a liquid-phase borohydride reduction. The electrocatalytic activity and stability of the Pd/CMG composite towards formic acid oxidation are found to be higher than those of reduced graphene oxide and commercial carbon materials such as Vulcan XC-72 supported Pd electrocatalysts.展开更多
The opticai properties of C,, chemicaiiy modified poiystyrene(C,, -PS copolymer) and the parent polystyrene (PS) films have been investigated.Addition of bulky C,, moiety, a special functional group, to the polystyren...The opticai properties of C,, chemicaiiy modified poiystyrene(C,, -PS copolymer) and the parent polystyrene (PS) films have been investigated.Addition of bulky C,, moiety, a special functional group, to the polystyrene by anovel organometallic reaction modified considerably the optical property of theparent polystyrene. The lattice periodicity of pure PS film is subject to someperturbation or distortion in varying degrees due to the covalent attachInent of bulkyC,, moiety to the polymer backbone. C,,-PS copolymer possesses a new energy ba-ndstructure with indirect forbidden band when compared with the parent PS.展开更多
An electrochemical method for the simultaneous determination of lead(II)and Cadmium(II)with a calix[6]arene modified carbon paste electrode(CPE)has been developed.Pb^(2+)and Cd^(2+)were accumulated at the surface of t...An electrochemical method for the simultaneous determination of lead(II)and Cadmium(II)with a calix[6]arene modified carbon paste electrode(CPE)has been developed.Pb^(2+)and Cd^(2+)were accumulated at the surface of the modified electrode via formation of chemical complexes with calix[6]arene,and reduced at 1.40 V.During the following anodic potential sweep,reduced lead and cadmium were oxidized,and two well-defined striping peaks appeared at about?0.60 V and?0.84 V.Compared with a bare carbon paste electrode,the calix[6]arene modified CPE greatly improves the sensitivity of determining lead and cadmium.The stripping peak currents change linearly with the concentration of Pb^(2+)3.0×10^(-8)–8.0×10^(-6)mol·L^(-1).and with that of Cd^(2+)6.0×10^(-8)–1.0×10^(-5)mol·L^(-1).The detection limits of Pb^(2+)and Cd^(2+)are found to be 8.0×10?9 mol·L?1 and 2.0×10^(-8)mol·L?1,respectively.The modified carbon paste electrode was applied to determine trace levels of lead and cadmium in water samples.Comparing with that of atomic absorption spectrometry,the results suggests that the calix[6]arene modified CPE has great potential for the practical sample analysis.展开更多
The electrochemical behaviors of Eu3+ on Eastman AQ-29D/glassy carbon(GC) chemically modified electrode(CME) were studied. It was found that the reduction-oxidation process of Eu3+ is in a semi-infinite condition in 0...The electrochemical behaviors of Eu3+ on Eastman AQ-29D/glassy carbon(GC) chemically modified electrode(CME) were studied. It was found that the reduction-oxidation process of Eu3+ is in a semi-infinite condition in 0.1 mol/L NaCIO4 supporting electrolyte(pH 4.4). The calibration curve was linear over the range 1.0×10-7 to 1.0×105 mol/L of Eu3+.The charge transport apparent diffusion coefficient of Eu3+ in the polymer film was determined to be(3.2±1.1)×10-11cm2/s by chronocoulometry.展开更多
Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified ...Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified electrode showed electrochemical cyclic voltammetric responses in phosphate buffers.展开更多
Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characteriz...Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characterized by determining zero point of charge(p Hzpc), and using BET, SEM and FTIR. Then effects of operational parameters on adsorption of AGY-7GL were studied in a batch system. The effect of various parameters such as contact time(0-180 min), pH(2-8), temperature(293-323 K), CMC concentration(0.075-0.5 mg/L) and initial AGY-7GL concentration(75-250 mg/L) were investigated on the adsorption efficiency and capacity adsorption of CMC for the removal of AGY-7GL. Thermodynamic and kinetic parameters were calculated from the results of the adsorption experiment. The evaluation of kinetic models shows that this data best fits the pseudo-second-order model. It is determined that the adsorption equilibrium data works very well with the nonlinear Freundlich isotherm model. Thermodynamic parameters such as ?H^0(19.0 k J/mol), ?G^0(-28.8 k J/mol) and ?S^0(0.148 k J/mol) were also determined. According to the experimental results, it is concluded that CMC could be used as an alternative low cost potential adsorbent for the removal of AGY-7GL from wastewater.展开更多
Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the...Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the charge transport process of the thin film electrode were discussed. Size of the hydrated anion (counter ion), concentration of the electrolyte, swelling property of the film in the solvent and thickness of the film have significant effects on the voltammetry of the thin film electrode. Electrochemical behaviours of europium-ferrocene derivative compelx chemically modified electrode were studied in an aqueous solution. When scan ning between 0-0.8 V (vs. SCE), experimental results indicate that the chemically modified electrode has good stability and reproducibility. The apparent rate constant of electrode reaction is deteminedd to be 6.7×10-1 s-1.展开更多
s: A new method for the preparation of an organic-inorganic composite film of the heteropolyanion has been developed by modifying P(Mo2O7)6-7 to the indium tin oxide (ITO) electrode surface. The modified electrode dis...s: A new method for the preparation of an organic-inorganic composite film of the heteropolyanion has been developed by modifying P(Mo2O7)6-7 to the indium tin oxide (ITO) electrode surface. The modified electrode displayed a strong catalytic activity towards the reduction of IO3-. In the range of 1.0?0-6~5?0-4mol/L, the catalytic current was linear proportional to the IO3- concentration.展开更多
L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for...L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.展开更多
基金Supported by the National Natural Science Foundation of China(No.20575048).
文摘A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In this study, it was found that nickel and palladium can form complexes with dimethylglyoxime(0. 05%, mass fraction) at pH 6.0 and can be extracted into chloroform quantitatively. The complexes can be evaporated into plasma at a suita-ble temperature( 1400℃) for ICP-OES detection. Under the optimized conditions, the detection limits of nickel and palladium are 0.48 and 0. 40 ng/mL, respectively, while the RSD values are separately 5.0% and 3.1% (p = 50 ng/mL, n = 7). The proposed method was applied to the determination of the target analytes in environmental sam-ples with satisfactory results.
基金supported by the National Natural Science Foundation of China(Nos.22336003 and 21637003).
文摘Acid mine drainage(AMD)seriously pollutes the environment due to its high acidity and a variety of heavy metals.Although lime neutralization has traditionally been employed to treat AMD,it comes with disadvantages,such as the large quantity of lime required and the generation of substantial amounts of neutralized sludge.Hence,we propose a modified chemical mineralization coupled with sodium sulfide precipitation to simultaneously recover metals from AMD and neutralize acidity.The modified chemical mineralization process effectively removed total iron(TFe)and SO_(4)^(2-) through chemically forming schwertmannite(Sch).By regulating temperature and H_(2)O_(2) addition mode,the hydrolysis of Fe3+and SO_(4)^(2-) in chemical mineralization was significantly enhanced,resulting in a high yield of Sch.Subsequent introduction of sodium sulfide to already-treated AMD using modified chemical mineralization could harvest or recover other valuable metals other than Fe and maintain a neutral pH of the final effluent.The metal levels in the sulphide precipitation reached as high as 17.9 mg/g,which was three times higher than that achieved through lime neutralization(6.3 mg/g).Moreover,the cost of treating AMD was 15 Chinese Yuan(CNY)/m^(3) AMD,which was significantly lower than that of lime neutralization(35 CNY/m^(3) AMD).Therefore,this approach has a good engineering application prospect in actual AMD treatment.
基金support by Universidad Nacional de Rosario(80020180300114UR and 80020180100128UR)CONICET(PIP No 11220200102423)and FONCYT(PICT2015-3574 and PICT2018-01554)for the development of this work.
文摘The generation of chemically engineered essential oils(CEEOs)prepared from bi-heteroatomic reactions using ammonium thiocyanate as a source of bioactive compounds is described.The impact of the reaction on the chemical composition of the mixtures was qualitatively demonstrated through GC-MS,utilizing univariate and multivariate analysis.The reaction transformed most of the components in the natural mixtures,thereby expanding the chemical diversity of the mixtures.Changes in inhibition properties between natural and CEEOs were demonstrated through acetylcholinesterase TLC autography,resulting in a threefold increase in the number of positive events due to the modification process.The chemically engineered Origanum vulgare L.essential oil was subjected to bioguided fractionation,leading to the discovery of four new active compounds with similar or higher potency than eserine against the enzyme.The results suggest that the directed chemical transformation of essential oils can be a valuable strategy for discovering new acetylcholinesterase(AChE)inhibitors.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(NSFC)(Grant Nos.12174143 and 12404014)the Basic Science Center Project of the NSFC(Grant No.52388201).
文摘High pressure enables the creation of novel functional materials by modifying chemical bonding and crystal structure,opening avenues for the development of high-energy-density polynitrogen materials.We present the high-pressure synthesis of three polynitrides P1 AgN7,P21/c AgN5,and P-1 AgN4,achieved through direct reactions between silver and nitrogen.Notably,the synthesis pressures required for the formation of N5 and N6 rings from metal–nitrogen reactions in this work represent the lowest values reported to date in high-pressure studies.At 15 GPa,isolated N5 rings are stabilized in P1 AgN7 and P21/c AgN5.At 26.3 GPa,P-1 AgN4 is synthesized,featuring infinite onedimensional nitrogen chains composed of alternating N2 and N6 rings,a unique catenation not observed in other polynitrides.In addition,AgN7,AgN5,and AgN4 possess significantly higher volumetric energy densities Ev than the conventional explosive TNT,making them promising high-energy-density materials.
基金National NaturalScience Foundation of China (Grant No.2093200 1,20832008)National Basic Research Program of China(Grant No.2009ZX09503)
文摘Stability, specificity, and pharmacokinetic properties are some of the challenges facing RNAi therapeutics. In this review, the progresses in chemically modified siRNAs and siRNA conjugates are summarized. The proper modification of siRNA with nucleoside analogues, construction of siRNA conjugates, and reliable prediction of the property based on those strategies for a given siRNA sequence would certainly be an essential part of the solution to these challenges.
基金This work was financially supported by the National Natural Science Foundation of China (No. 90510001).
文摘Graphite material was used as the electrode for an all-vanadium redox flow battery, and the electrode was modified by transition metallic ions to enhance its electrochemical behavior. An porous graphite composite electrode has high specific surface area and high current density. The electrode modified by transition metallic ions has improved catalysis behavior that can catalyze the V(Ⅱ)-V(Ⅴ) redox reaction showed by cyclic voltammograms. This article studied the impedance of the modified electrode by electrochemical impedance spectroscopy (EIS), and approved that the electrode modified by Co^2+ and Mn^2+ has a lower charge transfer resistance than the non-modified electrode. The effect of average particle size distribution is at lower frequencies that the slope of Warburg impedance is reduced by large particle size distribution. The voltage efficiency of the Co^2+ modified electrode test cell is 81.5%, which is higher than that of the non-modified electrode.
文摘In the present work,a chemically modified electrode has been fabricated utilizing Bi_(2)O_(3)/ZnO nanocomposite.The nanocomposite was synthesized by simple sonochemical method and characterized for its structural and morphological properties by using XRD,FESEM,EDAX,HRTEM and XPS techniques.The results clearly indicated co-existence of Bi_(2)O_(3) and ZnO in the nanocomposite with chemical interaction between them.Bi_(2)O_(3)/ZnO nanocomposite based glassy carbon electrode(GCE)was utilized for sensitive voltammetric detection of an anti-biotic drug(balofloxacin).The modification amplified the electroactive surface area of the sensor,thus providing more sites for oxidation of analyte.Cyclic and square wave voltammograms revealed that Bi_(2)O_(3)/ZnO modified electrode provides excellent electrocatalytic action towards balofloxacin oxidation.The current exhibited a wide linear response in concentration range of 150e1000 nM and detection limit of 40.5 nM was attained.The modified electrode offered advantages in terms of simplicity of preparation,fair stability(RSD 1.45%),appreciable reproducibility(RSD 2.03%)and selectivity.The proposed sensor was applied for determining balofloxacin in commercial pharmaceutical formulations and blood serum samples with the mean recoveries of 99.09% and 99.5%,respectively.
基金Supported by the National Natural Science Foundation of China
文摘Conducting polymers have been studied extensively. An interesting property of the conducting polymer is that the conductivity of some polymers, such as polypyrrolc, polyaniline, poly(3-methylthiophene) etc. , is affected by the voltage applied to them. For polypyrrole, the oxidized state is an electronic conductor and the reduced state is essentially insulating. Using this property, one can fabricate the polymer-based electronic devices. Experimental results of Pickun
文摘In a phosphate buffer, a hemoglobin (Hb)-imprinted polymer complex was prepared using maleic anhydride (MAH) modified chitosan beads as matrix, acrylamide (AM) as functional monomer, N,N-methylenebisacrylamide (MBA) as cross-linker and potassiumpersulfate (KPS) / sodium hydrogen sulfite (NaHSO3) as initiators. Langmuir analysis showed that an equal class of adsorption was formed in the molecular imprinting polymer (MIP), and the MIP has high adsorption capacity and selectivity for the imprinted molecule. The MIP can be reused and the recovery was approximately 100% at low concentration.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328803)
文摘An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol(4-FTP) self-assembled monolayers(SAM) to chemically treat the silver source–drain(S/D) contacts while the silicon oxide(SiO2) dielectric interface is further primed by either hexamethyldisilazane(HMDS) or octyltrichlorosilane(OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm^2·V^-1·s^-1 to 0.91 cm^2·V^-1·s^-1.
基金supported by the National Basic Research Program of China(Grant No.2007CB209700)the Graduate Student Innovation Foundation of Jiangsu Province,China(Grant No.CX09B_075Z)the Research Funding of Nanjing University of Aeronautics and Astronautics,China(Grant No.NS2010165)
文摘A novel electrode material based on chemically modified graphene (CMG) with aminophenyl groups is covalently functionalized by a nucleophilic ring-opening reaction between the epoxy groups of graphene oxide and the aminophenyl groups of p-phenylenediamine. Palladium nanoparticles with an average diameter of 4.2 nm are deposited on the CMG by a liquid-phase borohydride reduction. The electrocatalytic activity and stability of the Pd/CMG composite towards formic acid oxidation are found to be higher than those of reduced graphene oxide and commercial carbon materials such as Vulcan XC-72 supported Pd electrocatalysts.
文摘The opticai properties of C,, chemicaiiy modified poiystyrene(C,, -PS copolymer) and the parent polystyrene (PS) films have been investigated.Addition of bulky C,, moiety, a special functional group, to the polystyrene by anovel organometallic reaction modified considerably the optical property of theparent polystyrene. The lattice periodicity of pure PS film is subject to someperturbation or distortion in varying degrees due to the covalent attachInent of bulkyC,, moiety to the polymer backbone. C,,-PS copolymer possesses a new energy ba-ndstructure with indirect forbidden band when compared with the parent PS.
基金Supported by the National Natural Science Foundation of China(60171023)
文摘An electrochemical method for the simultaneous determination of lead(II)and Cadmium(II)with a calix[6]arene modified carbon paste electrode(CPE)has been developed.Pb^(2+)and Cd^(2+)were accumulated at the surface of the modified electrode via formation of chemical complexes with calix[6]arene,and reduced at 1.40 V.During the following anodic potential sweep,reduced lead and cadmium were oxidized,and two well-defined striping peaks appeared at about?0.60 V and?0.84 V.Compared with a bare carbon paste electrode,the calix[6]arene modified CPE greatly improves the sensitivity of determining lead and cadmium.The stripping peak currents change linearly with the concentration of Pb^(2+)3.0×10^(-8)–8.0×10^(-6)mol·L^(-1).and with that of Cd^(2+)6.0×10^(-8)–1.0×10^(-5)mol·L^(-1).The detection limits of Pb^(2+)and Cd^(2+)are found to be 8.0×10?9 mol·L?1 and 2.0×10^(-8)mol·L?1,respectively.The modified carbon paste electrode was applied to determine trace levels of lead and cadmium in water samples.Comparing with that of atomic absorption spectrometry,the results suggests that the calix[6]arene modified CPE has great potential for the practical sample analysis.
文摘The electrochemical behaviors of Eu3+ on Eastman AQ-29D/glassy carbon(GC) chemically modified electrode(CME) were studied. It was found that the reduction-oxidation process of Eu3+ is in a semi-infinite condition in 0.1 mol/L NaCIO4 supporting electrolyte(pH 4.4). The calibration curve was linear over the range 1.0×10-7 to 1.0×105 mol/L of Eu3+.The charge transport apparent diffusion coefficient of Eu3+ in the polymer film was determined to be(3.2±1.1)×10-11cm2/s by chronocoulometry.
基金We are grateful to the NNSFC (29973026), BNSF (2992007) Foundation for University Key Teacher by the Ministry of Education for the provision of financial support.
文摘Electrochemistry of nitrate reductases (NR) incorporated into 2-aminoethanethiol self-assembled on the gold electrode and polyacrylamide cast on the pyrolytic graphite electrode was examined. NR on chemical modified electrode showed electrochemical cyclic voltammetric responses in phosphate buffers.
文摘Chemically modified clay(CMC) was used as an adsorbent for the removal of Astrazon Golden Yellow 7GL(AGY-7GL), which is a basic dye from wastewater. For this purpose, the chemically modified clay was first characterized by determining zero point of charge(p Hzpc), and using BET, SEM and FTIR. Then effects of operational parameters on adsorption of AGY-7GL were studied in a batch system. The effect of various parameters such as contact time(0-180 min), pH(2-8), temperature(293-323 K), CMC concentration(0.075-0.5 mg/L) and initial AGY-7GL concentration(75-250 mg/L) were investigated on the adsorption efficiency and capacity adsorption of CMC for the removal of AGY-7GL. Thermodynamic and kinetic parameters were calculated from the results of the adsorption experiment. The evaluation of kinetic models shows that this data best fits the pseudo-second-order model. It is determined that the adsorption equilibrium data works very well with the nonlinear Freundlich isotherm model. Thermodynamic parameters such as ?H^0(19.0 k J/mol), ?G^0(-28.8 k J/mol) and ?S^0(0.148 k J/mol) were also determined. According to the experimental results, it is concluded that CMC could be used as an alternative low cost potential adsorbent for the removal of AGY-7GL from wastewater.
文摘Electrochemical behaviours of Europium-ferrocene derivative complex chemically modified electrodes were studied in the paper. Various factors which affect the voltammetry of the thin film modified electrodes, and the charge transport process of the thin film electrode were discussed. Size of the hydrated anion (counter ion), concentration of the electrolyte, swelling property of the film in the solvent and thickness of the film have significant effects on the voltammetry of the thin film electrode. Electrochemical behaviours of europium-ferrocene derivative compelx chemically modified electrode were studied in an aqueous solution. When scan ning between 0-0.8 V (vs. SCE), experimental results indicate that the chemically modified electrode has good stability and reproducibility. The apparent rate constant of electrode reaction is deteminedd to be 6.7×10-1 s-1.
基金Authors greatly appreciate the supports from the National Natural Science Foundation of China Returnee Foundation of Ministry of Education of China and Analytical Foundation of Nanjing University.
文摘s: A new method for the preparation of an organic-inorganic composite film of the heteropolyanion has been developed by modifying P(Mo2O7)6-7 to the indium tin oxide (ITO) electrode surface. The modified electrode displayed a strong catalytic activity towards the reduction of IO3-. In the range of 1.0?0-6~5?0-4mol/L, the catalytic current was linear proportional to the IO3- concentration.
文摘L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.