[Objective] To explore a high efficient phytoremediation technology for soil pollution. [Method] Foliage application and root irrigation were carried out to study the influence on amaranth repair efficiency by using c...[Objective] To explore a high efficient phytoremediation technology for soil pollution. [Method] Foliage application and root irrigation were carried out to study the influence on amaranth repair efficiency by using combined treatments of phytohor- mones (IAA, GA3 SA) and chelating agents (EDTA). [Result] The combined treatment increased the biomass of amaranth under 133Cs, 88Sr, Cr stress The 133Cs, 88Sr, Cr enrich- ment in amaranth by root irrigation were obviously higher than that by foliage appli- cation. The phytoextraction efficiency of phytohormones and chelating agents from best to poor was as following: 100 mg/L SA+1.5 mg/kg EDTA, 500 mg/L GA3+1.5 mg/kg EDTA, 100 mg/L IAA+1.5 mg/kg EDTA. [Conclusion] The most appropriate treatment was the combined treatment of 100 mg/L SA+l.5mg/kg EDTA by soil irri- gation, which could make the total absorption doses of 133Cs, 88Sr, Cr per plant achieve the maximum.展开更多
In this paper,ordered mesoporous alumina(OMA)support with the high surface area(328 m^(2)g^(-1))and the large pore volume 0.74(cm^(3)·g^(-1))was synthesized by homogeneous precipitation method.And the influence o...In this paper,ordered mesoporous alumina(OMA)support with the high surface area(328 m^(2)g^(-1))and the large pore volume 0.74(cm^(3)·g^(-1))was synthesized by homogeneous precipitation method.And the influence of EDTA on the physical and chemical properties of the modified catalysts was also studied.The characteristic results showed that the addition of EDTA could adjust the metal-support interaction and improved the acidity of the corresponding catalyst.Combined with the catalytic performance results,the EDTA-modified Ni Mo E(1.0)/OMA catalyst displays the highest DBT hydrodesulfurization conversion(97.7%).展开更多
In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric aci...In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.展开更多
The current work is focused on the study of the bio-sorption of hexavalent chromium from aqueous solution using sisal natural fiber(Agave sisalana) treated by various chelating agents(ligands) such as urea(UR),thiocar...The current work is focused on the study of the bio-sorption of hexavalent chromium from aqueous solution using sisal natural fiber(Agave sisalana) treated by various chelating agents(ligands) such as urea(UR),thiocarbamide(TC), ethylenediaminetetraacetic acid(EDTA), and diphenyl carbazide(DCZ). The fiber treatments were investigated using Fourier Transform Infrared Spectroscopy(FTIR) and Scanning electron microscope(SEM). The kinetics of chromium bio-sorption was studied in batch presses under the effect of some physicochemical factors such as the nature of chelating agent(F@UR, F@TC, F@DCZ, and F@EDTA),adsorbent dose(2–10 g·L^(-1)), chromium initial concentration(100–500 mg·L^(-1)), solution pH(1–6), and batch temperature(20 ℃–50 ℃). This study resulted in an optimum adsorption at a chromium initial concentration of 100 mg·L^(-1), at pH 2, and at 20 ℃. The obtained results showed clearly that the treatment with chelating agent boosts the adsorptive capacity of A. sisalana fibers Cr(VI) 10.9 mg·g^(-1) to 58.6 mg·g^(-1). The modeling study showed that the adsorption kinetics obey the pseudo-second-order model, with an R2 in the range of 0.991 and 0.999. The bio-sorption isotherms followed the Langmuir model; the maximum uptake capacity of(F@N, F@UR,F@TC, F@DCZ, and F@EDTA) was found to be respectively, 12.3 mg·g^(-1), 25.33 mg·g^(-1), 28.73 mg·g^(-1),42.54 mg·g^(-1), and 61.45 mg·g^(-1). The determined adsorption thermodynamics parameters such as enthalpy,free energy, and entropy showed that the adsorption process is exothermic, spontaneous, and has a stable configuration.展开更多
To improve the bioactivity and corrosion resistance of AZ91 D magnesium alloy,hydroxyapatite(HAp) coatings with novel microstructured morphologies were prepared successfully on AZ91 D substrates via a facile hydroth...To improve the bioactivity and corrosion resistance of AZ91 D magnesium alloy,hydroxyapatite(HAp) coatings with novel microstructured morphologies were prepared successfully on AZ91 D substrates via a facile hydrothermal method.Different chelating agents including polyaspartic acid(PASP) and ethylenediaminetetraacetic acid(EDTA) were introduced to investigate their effects on the morphology and corrosion resistance of the coated magnesium alloys.The results revealed that the coating prepared with PASP was composed of many uniform urchin-like microspheres,while the coating prepared with EDTA consisted of many flower-like particles.Moreover,the crystallinity of the coating prepared with EDTA was much higher than that of the coating prepared with PASP.Electrochemical tests revealed that the corrosion resistance of the substrate was significantly improved after being coated with each coating.Immersion test of the coated samples in simulated body fluid(SBF) demonstrated that the coatings could be biodegraded gradually and induce the formation of calcium phosphate particles.展开更多
Although Cd is a pollutant of public health relevance,many dietary sources from which it can be absorbed into human tissues remain unknown.While it is well established that the biogeochemical cycle of Cd involves its ...Although Cd is a pollutant of public health relevance,many dietary sources from which it can be absorbed into human tissues remain unknown.While it is well established that the biogeochemical cycle of Cd involves its complexation with environment-derived ligands(e.g.,humic acids,HAs) and anthropogenic ones(e.g.,chelating agents,CAs),the interaction of Cd with both of these ligands is less well understood.To gain insight,a HA–Cd complex was injected on a size-exclusion chromatography(SEC) column coupled on-line with a flame atomic absorption spectrometer(FAAS) using 10 mmol/L Tris buffer(pH 8.0) as the mobile phase.This approach allowed us to observe the intact HA–Cd complex and the retention behavior of Cd as a function of 2–20 μmol/L concentrations of ethylenediaminetetraacetic acid(EDTA),diethylenetriaminepentaacetic acid(DTPA) or methylglycinediacetic acid(MGDA) that were added to the mobile phase.An increase of the retention time of Cd was indicative of a partial or complete abstraction of Cd from HA.Our results revealed that all CAs abstracted Cd from the HA–Cd complex at concentrations of 5 μmol/L,while MGDA and DTPA were effective at 2 μmol/L.The bioavailability of some of the on-column formed CA–Cd complexes explains the previously reported increased accumulation of Cd in periphyton in the ecosystem downstream of wastewater treatment plants.In addition,our results imply that the use of effluents which contain CAs and Cd for the irrigation of food crops can introduce Cd into the food supply and compromise food safety.展开更多
Fine soil generated from the soil washing process can be the second problem, as contaminants are concentrated in the fine soil, and also took the difficult forms to treat because soluble and exchangeable fractions are...Fine soil generated from the soil washing process can be the second problem, as contaminants are concentrated in the fine soil, and also took the difficult forms to treat because soluble and exchangeable fractions are already removed by soil washing process; therefore, the fine soil is indicated to hazardous waste, and discarded in hazardous waste landfill. Thus, this research would be performed that arsenic and heavy metals formed difficult to remove in the fine soil were converted to more treatable fractions with chelating agents. Moreover, feasibility study to apply the second remediation targeted to the fine soil inquired. As a result, the chelating agent was decided 50 mM Na2EDTA, and it could develop the complex. In addition, the result of sequential extraction showed that Mn/Fe-oxide fraction, comprised about 28% of amount at first, was decreased about 16%, and organic fraction, consisted approximately 20%, was also decreased about 11%, while exchangeable fraction and carbonate fraction were increased. This result means that the difficult fractions removed could change fractions) by chelating agent. This research can provide the possibility hazardous waste because of difficulty to remediate. the more treatable fractions (exchangeable and carbonate to treat the fine soil, although the fine soil was regarded to展开更多
A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment. The amount of adsorbed ch...A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment. The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the remodel of Cr(Ⅲ) by sediment from solutions and the inhibiting effect was in the order:citric acid > tartaric acid > EDTA, salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.展开更多
For realizing the effective flotation of refractory copper ox-idized ores and developing the activation-flotation theory , the influences of nine different organic chelating agents on xanthate collection pcnver and it...For realizing the effective flotation of refractory copper ox-idized ores and developing the activation-flotation theory , the influences of nine different organic chelating agents on xanthate collection pcnver and its adsorption characteristics ivere studied in the flotation of malachite and chrysocolla representatively selected by means of XPS,IR, absorbed quanti-ty measurements and flotation tests.For easily-dissolved malachite flotation , a small amount of chelating agent can obviously enhance xanthate collecting power and make malachite floated easily , and so reduces the consumption of xanthate. For hard-dis-晄olved chrysocolla, chelating agent is able to increase its recovery to 90% , but the chelating agent consumption is high. Chelating agent and xanthate can produce synergistic adsorptions, which follmv Freundlich's adsorption equation on malachite and Chrysocolla surfaces. The high chemical activity of chelating agent and its synergistic activation on xanthate are the key to improving xanthate collection poiver. The synergistic activation of chelat-ing agent on xanthate on melachite surfaces is clearly stronger than on chrysocolla surfaces. According to experimental results, it can be thought that the synergistic activation results from the synergistic complexation of chelating agent and xanthate with copper ions to form biligand-tribasic co-ordination complex.展开更多
Bleaching of the kaolin ore from Shaziling Kaolin Mine in Jiangxi Province of China was studied with the aim of enhancing the quality and value of the ore to meet the requirements from the ceramics manufacturers. Fact...Bleaching of the kaolin ore from Shaziling Kaolin Mine in Jiangxi Province of China was studied with the aim of enhancing the quality and value of the ore to meet the requirements from the ceramics manufacturers. Factors affecting the reductive bleaching of kaolin ore with sodium dithionite as the bleaching agent were studied and optimized to increase the whiteness of the kaolin ore from 38. 5% to about 65%. However, it was found that in the conventional bleaching process, a washing step to remove the ferrous ions from the bleached kaolin suspension was indispensable, which made the process complicated and restricted the capacity of the production. In addition, the whiteness of the bleached kaolin products was unstable. To solve the above problems, a new technique with the application of chelating agents in the bleaching process was developed to remove ferrous ions and get rid of the washing step. The bleaching process of kaolin was simplified. The whiteness of the bleached kaolin products was stabilized as well as increased to about 70%. The mechanism of the bleaching process and the action of the chelating agents were discussed.展开更多
In this paper, the complexing abilities of EDTA, TTHA and Cit. with lead in the Pb(2.59 mg/g) contaminated soil were compared in the laboratory. Possibilities for lead and the threeagents to develop stable complexes i...In this paper, the complexing abilities of EDTA, TTHA and Cit. with lead in the Pb(2.59 mg/g) contaminated soil were compared in the laboratory. Possibilities for lead and the threeagents to develop stable complexes increased proportionally to the growth of lead complexible formwhen the PH values ranged between 4 and 6. Under acid conditions, logB_(Pb-TTHA)) valued as 28.1 wasmuch higher than logB_(Pb-EDTA), as 18.0 depending on producing Pb_2-TTHA (logK_(Pb_2-TTHA= 11 0) andPb-HTTHA (logK(Pb-HTTTHA)=8.2)). Conclusively, the complexing ability of TTHA with Pb still ex-aseded that of EDTA by about 10% even when the amount of TTHA added was only equal to onefourth of that of EDTA. Due to the lower cost and less harzn to crops, Cit. can still be taken as abetter chelating agent in acid soil although its coordinative capability with Pb was weaker thanEDTA and TTHA.展开更多
Eleven chelating agents were studied for their capabilities to mobilize the cadmium bound tp bovine serum albumin(BSA).The parameter F,which is defined as the ratio between the percentages of cadmium bound to BSA in t...Eleven chelating agents were studied for their capabilities to mobilize the cadmium bound tp bovine serum albumin(BSA).The parameter F,which is defined as the ratio between the percentages of cadmium bound to BSA in the presence and absence of chelating agents,can be used as the criterion to evaluate the mobilizing capability of chelating agent.The F values determined experimentally lead to a mobilizing capability order:DTPA>EDTA>EGTA>NTA>TR1EN>PEN>CYS>HIS>SAThe polyaminopolycarboxylate type chelators mobilize cadmium effectively.A linear relationship was found between 1gF and lg k'CdL (conditional stability constant of the cadmium chelate).展开更多
In a quest for better chelating therapy drugs for the treatment of intoxication by Fe, Al, oractinides, two new series of mixed catechol-bisphosphonate through amide linkage were synthesized.Benzyl group was used as p...In a quest for better chelating therapy drugs for the treatment of intoxication by Fe, Al, oractinides, two new series of mixed catechol-bisphosphonate through amide linkage were synthesized.Benzyl group was used as protecting group to avoid the breakage of amide by acid hydrolysis orimcomplete reaction in silylation-dealkylation using bromotrimethylsilane.展开更多
α,ε-N,N'-bis(L-cysteinyl)-L-lysine was synthesized and char- acterized for the first time.It was then employed as a bifunctional chelating agent to chelate technetium-99m and subsequently conjugated to fragment ...α,ε-N,N'-bis(L-cysteinyl)-L-lysine was synthesized and char- acterized for the first time.It was then employed as a bifunctional chelating agent to chelate technetium-99m and subsequently conjugated to fragment F(ab')_2 of anti-gastric tumor monoclonal antibody 3G9.The radiolabelled antibody was satisfactorily stable and immunoreactive.展开更多
This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta po...This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta potential measurement,and spontaneous imbibition experiment.The introduction of 5%DTPA-sW solution resulted in a significant decrease in the rock-oil contact angle from 143°to 23,along with a reduction in the Zeta potential from-2.29 mV to-13.06 mV,thereby altering the rock surface charge and shifting its wettability from an oil-wet state to a strongly water-wet state.The presence or absence of potential determining ions(Ca^(2+),Mg^(2+),SO_(4)^(2-))in the solution did not impact the effectiveness of DTPA in changing the rock wettability.However,by tripling the concentration of these ions in the solution,the performance of 5%DTPA-SW solution in changing wettability was impaired.Additionally,spontaneous imbibition tests demonstrated that the 5%DTPA-SW solution led to an increase in oil recovery up to 39.6%.Thus,the optimum mass fraction of DTPA for changing sandstone wettability was determined to be5%.展开更多
The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash ...The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.展开更多
Heavy metal stabilization and alkali neutralization are crucial for the management of municipal solid waste incineration fly ash(MSWI FA).In this study,the effects of oxalic acid(OA)and citric acid(CA)washing on heavy...Heavy metal stabilization and alkali neutralization are crucial for the management of municipal solid waste incineration fly ash(MSWI FA).In this study,the effects of oxalic acid(OA)and citric acid(CA)washing on heavy metal migration and alkali changes were investigated.Besides,three agents were selected to stabilize acid-washed fly ash(FA),and the effects of heavy metal stabilization under different disposal environments and the changes in their form distributions were comparatively analyzed.The experimental results demonstrated that with increasing organic acid concentration,the amount of Cd and Pb extracted from MSWI FA increased,whereas the amount of alkalis tended to decrease.Moreover,the leaching concentration of heavy metals and the percentage of unstable forms increased after acid washing.The alkalis content in the products decreased to 7.91-8.75 after stabilization,which met the standards of hazardous waste landfills.Compared with other agents,sodium diethyldithiocarbamate(DDTC)exhibited excellent heavy metal stabilization performance.After the addition of 1%DDTC,the leaching concentrations of Cd and Pb decreased to values lower than the national standard limit.Additionally,the curing rates of Cd and Pb were greater than 98%under the two leaching conditions.With the addition of DDTC,the percentage of stable forms increased,and the percentages of stable Cd and Pb forms increased to 87.68%and 99.03%,respectively,after treatment with 2%DDTC.The above results corroborated that CA coupled with DDTC stabilization can significantly reduce Cd and Pb toxicity and neutralize alkalinity in FA.展开更多
Four different chelating agents,ethylenediamine tetraacetic acid,citric acid,glucose,and sucrose,were selected to synthesize MnCr_(2)O_(4)catalysts(spinel structure)with sol-gel method.Among the prepared catalysts,MnC...Four different chelating agents,ethylenediamine tetraacetic acid,citric acid,glucose,and sucrose,were selected to synthesize MnCr_(2)O_(4)catalysts(spinel structure)with sol-gel method.Among the prepared catalysts,MnCr_(2)O_(4)-S-700,which had the largest specific surface area,showed the best catalytic performance,with a T80 temperature window of 200-260℃ and a denitrification rate of up to 91.6%at 220℃.Hydrogen temperature programmed reduction,ammonia temperature programmed desorption,and X-ray photoelectron spectroscopy results showed that MnCr_(2)O_(4)-S-700 possessed more chemisorbed oxygen Oαas well as active sites(Mn^(3+)+Mn^(4+))and(Cr^(3+)+Cr^(5+)),which improved acidity and redox capacity.There was abundant electron transfer between Mn and Cr elements(Cr^(5+)+Mn^(3+)→Cr^(3+)+Mn^(4+)),enhancing the redox capacity of catalysts.According to the in situ diffuse reflectance infrared transform spectroscopy spectra,it could be concluded that the MnCr_(2)O_(4)-S-700 catalyst followed not only the Langmuir-Hinshelwood mechanism but also the Eley-Rideal mechanism.This work displays the effect of the complexation mechanism of chelating agents on the SCR reaction with NH_(3)over spinel catalysts.展开更多
The use of diethylenetriaminepentaacetic acid(DTPA)chelating agent has shown promising results for enhanced oil recovery(EOR)in prior research.Several mechanisms,mainly resulting from rock-fluid interaction,have been ...The use of diethylenetriaminepentaacetic acid(DTPA)chelating agent has shown promising results for enhanced oil recovery(EOR)in prior research.Several mechanisms,mainly resulting from rock-fluid interaction,have been proposed for chelating agent flooding;however,little attention has been paid to fluid-fluid interaction thus far.The assessment of these mechanisms has primarily relied on macroscopic techniques such as core flooding.This paper aims to investigate the injection of DTPA brine and its dominant mechanisms at the pore scale using a clay-coated micromodel.The micromodel tests were performed under oil-wet and water-wet states.For a more precise examination of fluid/fluid interactions,the dynamic interfacial tension(IFT)and Zeta potential were measured.It was observed that the injection of DTPA brine in water-wet state changed the saturation distribution and increased oil recovery.Based on visual inspections,this change in saturation distribution could potentially be linked to the formation of micro-dispersions and viscoelastic interfacial phenomena.Micro-dispersions facilitate flow to unswept areas,and viscoelastic interface formation reshapes the interface between oil and brine,causing disconnected oil droplets to coalesce and thus increase recovery.Under the oil-wet state,the micro-dispersion formation and wettability alteration can be the dominant mechanisms,and the amount of recovered oil was higher than that observed in the water-wet state.Furthermore,Zeta potential measurements at the interface between brine and oil showed a more negative value for DTPA brine,which is effective in wettability alteration and micro-dispersions stability.The results indicate that IFT reduction was not significant enough to be considered the dominant mechanism,although it assists in DTPA brine penetration into the crude oil and subsequent micro-dispersion formation.展开更多
The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structur...The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.展开更多
基金Supported by the Plan for the National Defense Basic Scientific Research of the State Administration of ScienceTechnology and Industry for National Defense of China(b312011)~~
文摘[Objective] To explore a high efficient phytoremediation technology for soil pollution. [Method] Foliage application and root irrigation were carried out to study the influence on amaranth repair efficiency by using combined treatments of phytohor- mones (IAA, GA3 SA) and chelating agents (EDTA). [Result] The combined treatment increased the biomass of amaranth under 133Cs, 88Sr, Cr stress The 133Cs, 88Sr, Cr enrich- ment in amaranth by root irrigation were obviously higher than that by foliage appli- cation. The phytoextraction efficiency of phytohormones and chelating agents from best to poor was as following: 100 mg/L SA+1.5 mg/kg EDTA, 500 mg/L GA3+1.5 mg/kg EDTA, 100 mg/L IAA+1.5 mg/kg EDTA. [Conclusion] The most appropriate treatment was the combined treatment of 100 mg/L SA+l.5mg/kg EDTA by soil irri- gation, which could make the total absorption doses of 133Cs, 88Sr, Cr per plant achieve the maximum.
基金financially supported by the National Natural Science Foundation of China(No.21878330,21676298)the National Key R&D Program of China(2019YFC1907602)the CNPC Key Research Project(2016E-0707)。
文摘In this paper,ordered mesoporous alumina(OMA)support with the high surface area(328 m^(2)g^(-1))and the large pore volume 0.74(cm^(3)·g^(-1))was synthesized by homogeneous precipitation method.And the influence of EDTA on the physical and chemical properties of the modified catalysts was also studied.The characteristic results showed that the addition of EDTA could adjust the metal-support interaction and improved the acidity of the corresponding catalyst.Combined with the catalytic performance results,the EDTA-modified Ni Mo E(1.0)/OMA catalyst displays the highest DBT hydrodesulfurization conversion(97.7%).
基金Project(2010B050200007)supported by the Foundation of Science and Technology Planning Project of Guangdong Province,ChinaProject(2011ZM0054)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2011K0013)supported by the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,ChinaProject(2012)supported by the Research Funds of Guangdong Provincial Key Laboratory of Atmospheric environment and Pollution Control,China
文摘In the interest of accelerating aniline degradation, Fe2+ and chelated Fe2+ activated persulfate oxidations were investigated in neutral pH condition. Three kinds of chelating agents were selected including citric acid, oxalic acid and ethylenediamine tetraaceatate(EDTA) to maintain available Fe2+. The results indicate that the concentration of chelating agent and ferrous ion didn't follow a linear relationship with the degradation rate of aniline. A 1/1 ratio of chelating agent/Fe2+ results in a higher degradation rate compared to the results by other ratios. The oxidation enhancement factor using oxalic acid was found to be relatively low. In contrast, citric acid is more suitable chelating agent in the ferrous iron activated persulfate system and aniline exhibits a highest degradation with a persulfate/Fe2+/citric acid/aniline molar ratio of 50/25/25/1 compared to other molar ratios.
文摘The current work is focused on the study of the bio-sorption of hexavalent chromium from aqueous solution using sisal natural fiber(Agave sisalana) treated by various chelating agents(ligands) such as urea(UR),thiocarbamide(TC), ethylenediaminetetraacetic acid(EDTA), and diphenyl carbazide(DCZ). The fiber treatments were investigated using Fourier Transform Infrared Spectroscopy(FTIR) and Scanning electron microscope(SEM). The kinetics of chromium bio-sorption was studied in batch presses under the effect of some physicochemical factors such as the nature of chelating agent(F@UR, F@TC, F@DCZ, and F@EDTA),adsorbent dose(2–10 g·L^(-1)), chromium initial concentration(100–500 mg·L^(-1)), solution pH(1–6), and batch temperature(20 ℃–50 ℃). This study resulted in an optimum adsorption at a chromium initial concentration of 100 mg·L^(-1), at pH 2, and at 20 ℃. The obtained results showed clearly that the treatment with chelating agent boosts the adsorptive capacity of A. sisalana fibers Cr(VI) 10.9 mg·g^(-1) to 58.6 mg·g^(-1). The modeling study showed that the adsorption kinetics obey the pseudo-second-order model, with an R2 in the range of 0.991 and 0.999. The bio-sorption isotherms followed the Langmuir model; the maximum uptake capacity of(F@N, F@UR,F@TC, F@DCZ, and F@EDTA) was found to be respectively, 12.3 mg·g^(-1), 25.33 mg·g^(-1), 28.73 mg·g^(-1),42.54 mg·g^(-1), and 61.45 mg·g^(-1). The determined adsorption thermodynamics parameters such as enthalpy,free energy, and entropy showed that the adsorption process is exothermic, spontaneous, and has a stable configuration.
基金Funded by Shandong Provincial Natural Science Foundation,China(No.ZR2014EMM019)
文摘To improve the bioactivity and corrosion resistance of AZ91 D magnesium alloy,hydroxyapatite(HAp) coatings with novel microstructured morphologies were prepared successfully on AZ91 D substrates via a facile hydrothermal method.Different chelating agents including polyaspartic acid(PASP) and ethylenediaminetetraacetic acid(EDTA) were introduced to investigate their effects on the morphology and corrosion resistance of the coated magnesium alloys.The results revealed that the coating prepared with PASP was composed of many uniform urchin-like microspheres,while the coating prepared with EDTA consisted of many flower-like particles.Moreover,the crystallinity of the coating prepared with EDTA was much higher than that of the coating prepared with PASP.Electrochemical tests revealed that the corrosion resistance of the substrate was significantly improved after being coated with each coating.Immersion test of the coated samples in simulated body fluid(SBF) demonstrated that the coatings could be biodegraded gradually and induce the formation of calcium phosphate particles.
基金funded by the Natural Sciences and Engineering Research Council(NSERC)of Canada
文摘Although Cd is a pollutant of public health relevance,many dietary sources from which it can be absorbed into human tissues remain unknown.While it is well established that the biogeochemical cycle of Cd involves its complexation with environment-derived ligands(e.g.,humic acids,HAs) and anthropogenic ones(e.g.,chelating agents,CAs),the interaction of Cd with both of these ligands is less well understood.To gain insight,a HA–Cd complex was injected on a size-exclusion chromatography(SEC) column coupled on-line with a flame atomic absorption spectrometer(FAAS) using 10 mmol/L Tris buffer(pH 8.0) as the mobile phase.This approach allowed us to observe the intact HA–Cd complex and the retention behavior of Cd as a function of 2–20 μmol/L concentrations of ethylenediaminetetraacetic acid(EDTA),diethylenetriaminepentaacetic acid(DTPA) or methylglycinediacetic acid(MGDA) that were added to the mobile phase.An increase of the retention time of Cd was indicative of a partial or complete abstraction of Cd from HA.Our results revealed that all CAs abstracted Cd from the HA–Cd complex at concentrations of 5 μmol/L,while MGDA and DTPA were effective at 2 μmol/L.The bioavailability of some of the on-column formed CA–Cd complexes explains the previously reported increased accumulation of Cd in periphyton in the ecosystem downstream of wastewater treatment plants.In addition,our results imply that the use of effluents which contain CAs and Cd for the irrigation of food crops can introduce Cd into the food supply and compromise food safety.
文摘Fine soil generated from the soil washing process can be the second problem, as contaminants are concentrated in the fine soil, and also took the difficult forms to treat because soluble and exchangeable fractions are already removed by soil washing process; therefore, the fine soil is indicated to hazardous waste, and discarded in hazardous waste landfill. Thus, this research would be performed that arsenic and heavy metals formed difficult to remove in the fine soil were converted to more treatable fractions with chelating agents. Moreover, feasibility study to apply the second remediation targeted to the fine soil inquired. As a result, the chelating agent was decided 50 mM Na2EDTA, and it could develop the complex. In addition, the result of sequential extraction showed that Mn/Fe-oxide fraction, comprised about 28% of amount at first, was decreased about 16%, and organic fraction, consisted approximately 20%, was also decreased about 11%, while exchangeable fraction and carbonate fraction were increased. This result means that the difficult fractions removed could change fractions) by chelating agent. This research can provide the possibility hazardous waste because of difficulty to remediate. the more treatable fractions (exchangeable and carbonate to treat the fine soil, although the fine soil was regarded to
文摘A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment. The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the remodel of Cr(Ⅲ) by sediment from solutions and the inhibiting effect was in the order:citric acid > tartaric acid > EDTA, salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.
文摘For realizing the effective flotation of refractory copper ox-idized ores and developing the activation-flotation theory , the influences of nine different organic chelating agents on xanthate collection pcnver and its adsorption characteristics ivere studied in the flotation of malachite and chrysocolla representatively selected by means of XPS,IR, absorbed quanti-ty measurements and flotation tests.For easily-dissolved malachite flotation , a small amount of chelating agent can obviously enhance xanthate collecting power and make malachite floated easily , and so reduces the consumption of xanthate. For hard-dis-晄olved chrysocolla, chelating agent is able to increase its recovery to 90% , but the chelating agent consumption is high. Chelating agent and xanthate can produce synergistic adsorptions, which follmv Freundlich's adsorption equation on malachite and Chrysocolla surfaces. The high chemical activity of chelating agent and its synergistic activation on xanthate are the key to improving xanthate collection poiver. The synergistic activation of chelat-ing agent on xanthate on melachite surfaces is clearly stronger than on chrysocolla surfaces. According to experimental results, it can be thought that the synergistic activation results from the synergistic complexation of chelating agent and xanthate with copper ions to form biligand-tribasic co-ordination complex.
文摘Bleaching of the kaolin ore from Shaziling Kaolin Mine in Jiangxi Province of China was studied with the aim of enhancing the quality and value of the ore to meet the requirements from the ceramics manufacturers. Factors affecting the reductive bleaching of kaolin ore with sodium dithionite as the bleaching agent were studied and optimized to increase the whiteness of the kaolin ore from 38. 5% to about 65%. However, it was found that in the conventional bleaching process, a washing step to remove the ferrous ions from the bleached kaolin suspension was indispensable, which made the process complicated and restricted the capacity of the production. In addition, the whiteness of the bleached kaolin products was unstable. To solve the above problems, a new technique with the application of chelating agents in the bleaching process was developed to remove ferrous ions and get rid of the washing step. The bleaching process of kaolin was simplified. The whiteness of the bleached kaolin products was stabilized as well as increased to about 70%. The mechanism of the bleaching process and the action of the chelating agents were discussed.
文摘In this paper, the complexing abilities of EDTA, TTHA and Cit. with lead in the Pb(2.59 mg/g) contaminated soil were compared in the laboratory. Possibilities for lead and the threeagents to develop stable complexes increased proportionally to the growth of lead complexible formwhen the PH values ranged between 4 and 6. Under acid conditions, logB_(Pb-TTHA)) valued as 28.1 wasmuch higher than logB_(Pb-EDTA), as 18.0 depending on producing Pb_2-TTHA (logK_(Pb_2-TTHA= 11 0) andPb-HTTHA (logK(Pb-HTTTHA)=8.2)). Conclusively, the complexing ability of TTHA with Pb still ex-aseded that of EDTA by about 10% even when the amount of TTHA added was only equal to onefourth of that of EDTA. Due to the lower cost and less harzn to crops, Cit. can still be taken as abetter chelating agent in acid soil although its coordinative capability with Pb was weaker thanEDTA and TTHA.
文摘Eleven chelating agents were studied for their capabilities to mobilize the cadmium bound tp bovine serum albumin(BSA).The parameter F,which is defined as the ratio between the percentages of cadmium bound to BSA in the presence and absence of chelating agents,can be used as the criterion to evaluate the mobilizing capability of chelating agent.The F values determined experimentally lead to a mobilizing capability order:DTPA>EDTA>EGTA>NTA>TR1EN>PEN>CYS>HIS>SAThe polyaminopolycarboxylate type chelators mobilize cadmium effectively.A linear relationship was found between 1gF and lg k'CdL (conditional stability constant of the cadmium chelate).
文摘In a quest for better chelating therapy drugs for the treatment of intoxication by Fe, Al, oractinides, two new series of mixed catechol-bisphosphonate through amide linkage were synthesized.Benzyl group was used as protecting group to avoid the breakage of amide by acid hydrolysis orimcomplete reaction in silylation-dealkylation using bromotrimethylsilane.
文摘α,ε-N,N'-bis(L-cysteinyl)-L-lysine was synthesized and char- acterized for the first time.It was then employed as a bifunctional chelating agent to chelate technetium-99m and subsequently conjugated to fragment F(ab')_2 of anti-gastric tumor monoclonal antibody 3G9.The radiolabelled antibody was satisfactorily stable and immunoreactive.
文摘This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta potential measurement,and spontaneous imbibition experiment.The introduction of 5%DTPA-sW solution resulted in a significant decrease in the rock-oil contact angle from 143°to 23,along with a reduction in the Zeta potential from-2.29 mV to-13.06 mV,thereby altering the rock surface charge and shifting its wettability from an oil-wet state to a strongly water-wet state.The presence or absence of potential determining ions(Ca^(2+),Mg^(2+),SO_(4)^(2-))in the solution did not impact the effectiveness of DTPA in changing the rock wettability.However,by tripling the concentration of these ions in the solution,the performance of 5%DTPA-SW solution in changing wettability was impaired.Additionally,spontaneous imbibition tests demonstrated that the 5%DTPA-SW solution led to an increase in oil recovery up to 39.6%.Thus,the optimum mass fraction of DTPA for changing sandstone wettability was determined to be5%.
基金Supported by the Project of Shangai State-owned Assets Supervision and Administration Commission(2013019)Project of Shanghai Science and Technology Commission(13231201901)+1 种基金Innovation Foundation of Shanghai Science and Technology Commission(11231200200)Special Project for Zhangjiang High-tech Park in Shanghai(201505-HP-C104-005)
文摘The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.
基金sponsored by Jiangsu Provincial Science and Technology Program Project(Nos.BE2022604 and BE2021701).
文摘Heavy metal stabilization and alkali neutralization are crucial for the management of municipal solid waste incineration fly ash(MSWI FA).In this study,the effects of oxalic acid(OA)and citric acid(CA)washing on heavy metal migration and alkali changes were investigated.Besides,three agents were selected to stabilize acid-washed fly ash(FA),and the effects of heavy metal stabilization under different disposal environments and the changes in their form distributions were comparatively analyzed.The experimental results demonstrated that with increasing organic acid concentration,the amount of Cd and Pb extracted from MSWI FA increased,whereas the amount of alkalis tended to decrease.Moreover,the leaching concentration of heavy metals and the percentage of unstable forms increased after acid washing.The alkalis content in the products decreased to 7.91-8.75 after stabilization,which met the standards of hazardous waste landfills.Compared with other agents,sodium diethyldithiocarbamate(DDTC)exhibited excellent heavy metal stabilization performance.After the addition of 1%DDTC,the leaching concentrations of Cd and Pb decreased to values lower than the national standard limit.Additionally,the curing rates of Cd and Pb were greater than 98%under the two leaching conditions.With the addition of DDTC,the percentage of stable forms increased,and the percentages of stable Cd and Pb forms increased to 87.68%and 99.03%,respectively,after treatment with 2%DDTC.The above results corroborated that CA coupled with DDTC stabilization can significantly reduce Cd and Pb toxicity and neutralize alkalinity in FA.
基金supported by the National Natural Science Foundation of China(Grant No.52102367)the Fundamental Research Funds for the Central Universities(WUT,effect of the synthesis method on denitrification performances of the Mn-based spinel catalysts).
文摘Four different chelating agents,ethylenediamine tetraacetic acid,citric acid,glucose,and sucrose,were selected to synthesize MnCr_(2)O_(4)catalysts(spinel structure)with sol-gel method.Among the prepared catalysts,MnCr_(2)O_(4)-S-700,which had the largest specific surface area,showed the best catalytic performance,with a T80 temperature window of 200-260℃ and a denitrification rate of up to 91.6%at 220℃.Hydrogen temperature programmed reduction,ammonia temperature programmed desorption,and X-ray photoelectron spectroscopy results showed that MnCr_(2)O_(4)-S-700 possessed more chemisorbed oxygen Oαas well as active sites(Mn^(3+)+Mn^(4+))and(Cr^(3+)+Cr^(5+)),which improved acidity and redox capacity.There was abundant electron transfer between Mn and Cr elements(Cr^(5+)+Mn^(3+)→Cr^(3+)+Mn^(4+)),enhancing the redox capacity of catalysts.According to the in situ diffuse reflectance infrared transform spectroscopy spectra,it could be concluded that the MnCr_(2)O_(4)-S-700 catalyst followed not only the Langmuir-Hinshelwood mechanism but also the Eley-Rideal mechanism.This work displays the effect of the complexation mechanism of chelating agents on the SCR reaction with NH_(3)over spinel catalysts.
文摘The use of diethylenetriaminepentaacetic acid(DTPA)chelating agent has shown promising results for enhanced oil recovery(EOR)in prior research.Several mechanisms,mainly resulting from rock-fluid interaction,have been proposed for chelating agent flooding;however,little attention has been paid to fluid-fluid interaction thus far.The assessment of these mechanisms has primarily relied on macroscopic techniques such as core flooding.This paper aims to investigate the injection of DTPA brine and its dominant mechanisms at the pore scale using a clay-coated micromodel.The micromodel tests were performed under oil-wet and water-wet states.For a more precise examination of fluid/fluid interactions,the dynamic interfacial tension(IFT)and Zeta potential were measured.It was observed that the injection of DTPA brine in water-wet state changed the saturation distribution and increased oil recovery.Based on visual inspections,this change in saturation distribution could potentially be linked to the formation of micro-dispersions and viscoelastic interfacial phenomena.Micro-dispersions facilitate flow to unswept areas,and viscoelastic interface formation reshapes the interface between oil and brine,causing disconnected oil droplets to coalesce and thus increase recovery.Under the oil-wet state,the micro-dispersion formation and wettability alteration can be the dominant mechanisms,and the amount of recovered oil was higher than that observed in the water-wet state.Furthermore,Zeta potential measurements at the interface between brine and oil showed a more negative value for DTPA brine,which is effective in wettability alteration and micro-dispersions stability.The results indicate that IFT reduction was not significant enough to be considered the dominant mechanism,although it assists in DTPA brine penetration into the crude oil and subsequent micro-dispersion formation.
基金Project(2007BAQ01055)supported by the National Key Technology R&D Program of ChinaProject(2011SCU11081)supported by the Sichuan University Funds for Young Scientists,ChinaProject(20120181120103)supported by Ph.D.Programs Foundation of the Ministry of Education of China
文摘The Li3V2(PO4)3/C composite cathode material was synthesized via sol-gel method using three different chelating agents (citric acid, salicylic acid and polyacrylic acid) at pH value of 3 or 7. The crystal structure, morphology, specific surface area and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge test. The results show that the effects of pH value on the performance of the prepared materials are greatly related to the chelating agents. With salicylic acid or polyacrylic acid as the chelating reagent, the structure, morphology and electrochemical performance of the samples are greatly influenced by the pH values. However, the structure of the materials with citric acid as the chelating agent does not change as pH value changes, and the materials own uniform particle size distribution and good electrochemical performance. It delivers an initial discharge capacity of 113.58 mA·h/g at 10C, remaining as high as 108.48 mA·h/g after 900 cycles, with a capacity retention of 95.51%.